Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1599470.1599491acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Energy stability and fracture for frame rate rigid body simulations

Published: 01 August 2009 Publication History

Abstract

Our goal is to design robust algorithms that can be used for building real-time systems, but rather than starting with overly simplistic particle-based methods, we aim to modify higher-end visual effects algorithms. A major stumbling block in utilizing these visual effects algorithms for real-time simulation is their computational intensity. Physics engines struggle to fully exploit available resources to handle high scene complexity due to their need to divide those resources among many smaller time steps, and thus to obtain the maximum spatial complexity we design our algorithms to take only one time step per frame. This requires addressing both accuracy and stability issues for collisions, contact, and evolution in a manner significantly different from a typical simulation in which one can rely on shrinking the time step to ameliorate accuracy and stability issues. In this paper we present a novel algorithm for conserving both energy and momentum when advancing rigid body orientations, as well as a novel technique for clamping energy gain during contact and collisions. We also introduce a technique for fast and realistic fracture of rigid bodies using a novel collision-centered prescoring algorithm.

References

[1]
{AP98} Armero F., Petocz E.: Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Computer methods in applied mechanics and engineering 158, 3 (1998), 269--300.
[2]
{Bar89} Baraff D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. Comput. Graph. (Proc. SIGGRAPH 89) 23, 3 (1989), 223--232.
[3]
{Bar90} Baraff D.: Curved surfaces and coherence for nonpenetrating rigid body simulation. Comput. Graph. (Proc. SIGGRAPH 90) 24, 4 (1990), 19--28.
[4]
{Bar91} Baraff D.: Coping with friction for non-penetrating rigid body simulation. Comput. Graph. (Proc. SIGGRAPH 91) 25, 4 (1991), 31--40.
[5]
{Bar94} Baraff D.: Fast contact force computation for nonpenetrating rigid bodies. In Proc. SIGGRAPH 94 (1994), pp. 23--34.
[6]
{BHTF07} Bao Z., Hong J., Teran J., Fedkiw R.: Fracturing rigid materials. IEEE Trans. Viz. Comput. Graph. 13 (2007), 370--378.
[7]
{BHW96} Barzel R., Hughes J., Wood D.: Plausible motion simulation for computer graphics animation. In Comput. Anim. and Sim. '96 (1996), Proc. Eurographics Wrkshp., pp. 183--197.
[8]
{BRM09} Bou-Rabee N., Marsden J.: Hamilton-pontryagin integrators on lie groups part i: Introduction and structurepreserving properties. Foundations of Computational Mathematics 9, 2 (2009), 1615--3375.
[9]
{CR98} Chatterjee A., Ruina A.: A new algebraic rigid body collision law based on impulse space considerations. ASME J. Appl. Mech. 65, 4 (1998), 939--951.
[10]
{GBF03} Guendelman E., Bridson R., Fedkiw R.: Nonconvex rigid bodies with stacking. ACM Trans. Graph. (SIGGRAPH Proc.) 22, 3 (2003), 871--878.
[11]
{Hah88} Hahn J.: Realistic animation of rigid bodies. Comput. Graph. (Proc. SIGGRAPH 88) 22, 4 (1988), 299--308.
[12]
{IO06} Iben H. N., O'Brien J. F.: Generating surface crack patterns. 177--185.
[13]
{JLSW02} Ju T., Losasso F., Schaefer S., Warren J.: Dual contouring of Hermite data. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3 (2002), 339--346.
[14]
{KCD09} Kobilarov M., Crane K., Desbrun M.: Lie group integrators for animation and control of vehicles. ACM Transactions on Graphics 28, 2 (Apr. 2009).
[15]
{KEP05} Kaufman D., Edmunds T., Pai D.: Fast frictional dynamics for rigid bodies. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3 (2005), 946--956.
[16]
{KSJP08} Kaufman D., Sueda S., James D., Pai D.: Staggered projections for frictional contact in multibody systems. ACM Transactions on Graphics (SIGGRAPH Asia 2008) 27, 5 (2008), 164:1--164:11.
[17]
{KYT*06} Kharevych L., Yang W., Tong Y., Kanso E., Marsden J., Schröder P., Desbrun M.: Geometric variational integrators for computer animation. ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (2006), 43--51.
[18]
{LC87} Lorensen W., Cline H.: Marching cubes: A highresolution 3D surface construction algorithm. Comput. Graph. (SIGGRAPH Proc.) 21 (1987), 163--169.
[19]
{MBF04} Molino N., Bao Z., Fedkiw R.: A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 23 (2004), 385--392.
[20]
{MMDJ01} Müller M., McMillan L., Dorsey J., Jagnow R.: Real-time simulation of deformation and fracture of stiff materials. In Comput. Anim. and Sim. '01 (2001), Proc. Eurographics Wrkshp., Eurographics Assoc., pp. 99--111.
[21]
{MW88} Moore M., Wilhelms J.: Collision detection and response for computer animation. Comput. Graph. (Proc. SIGGRAPH 88) 22, 4 (1988), 289--298.
[22]
{NTB*91} Norton A., Turk G., Bacon B., Gerth J., Sweeney P.: Animation of fracture by physical modeling. Vis. Comput. 7, 4 (1991), 210--219.
[23]
{OBH02} O'Brien J., Bargteil A., Hodgins J.: Graphical modeling of ductile fracture. ACM Trans. Graph. (SIGGRAPH Proc.) 21 (2002), 291--294.
[24]
{OH99} O'Brien J., Hodgins J.: Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 1999 (1999), pp. 137--146.
[25]
{SSF08} Shinar T., Schroeder C., Fedkiw R.: Two-way coupling of rigid and deformable bodies. In SCA '08: Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on Computer animation (2008), pp. 95--103.
[26]
{ST00} Stewart D. E., Trinkle J. C.: An implicit timestepping scheme for rigid body dynamics with Coulomb friction. In IEEE Int. Conf. on Robotics and Automation (2000), pp. 162--169.
[27]
{SW91} Simo J., Wong K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. International Journal for Numerical Methods in Engineering 31, 1 (1991), 19--52.
[28]
{TGPS08} Thomaszewski B., Gumann A., Pabst S., Strasser W.: Magnets in motion. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 27, 5 (2008), 162:1--162:9.
[29]
{Vil08} Vilmart G.: Reducing round-off errors in rigid body dynamics. J. Comput. Phys. 227 (2008), 7083--7088.
[30]
{vZS07} van Zon R., Schofield J.: Numerical implementation of the exact dynamics of free rigid bodies. J. Comput. Phys. 225 (2007), 145--164.
[31]
{YOH00} Yngve G., O'Brien J., Hodgins J.: Animating explosions. In Proc. SIGGRAPH 2000 (2000), vol. 19, pp. 29--36.

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/3711852Online publication date: 9-Jan-2025
  • (2024)SPIRAL: An Efficient Algorithm for the Integration of the Equation of Rotational MotionComputer Physics Communications10.1016/j.cpc.2023.109077(109077)Online publication date: Jan-2024
  • (2023)Breaking Good: Fracture Modes for Realtime DestructionACM Transactions on Graphics10.1145/354954042:1(1-12)Online publication date: 9-Mar-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
August 2009
258 pages
ISBN:9781605586106
DOI:10.1145/1599470
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 August 2009

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SCA '09
Sponsor:

Acceptance Rates

Overall Acceptance Rate 183 of 487 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)3
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Implicit Bonded Discrete Element Method with Manifold OptimizationACM Transactions on Graphics10.1145/3711852Online publication date: 9-Jan-2025
  • (2024)SPIRAL: An Efficient Algorithm for the Integration of the Equation of Rotational MotionComputer Physics Communications10.1016/j.cpc.2023.109077(109077)Online publication date: Jan-2024
  • (2023)Breaking Good: Fracture Modes for Realtime DestructionACM Transactions on Graphics10.1145/354954042:1(1-12)Online publication date: 9-Mar-2023
  • (2023)A New Fracture Simulation Algorithm Based On Peridynamics for Brittle ObjectsIEEE Access10.1109/ACCESS.2023.330563111(88609-88617)Online publication date: 2023
  • (2022)Simulating Brittle Fracture with Material PointsACM Transactions on Graphics10.1145/352257341:5(1-20)Online publication date: 13-May-2022
  • (2020)Displacement‐Correlated XFEM for Simulating Brittle FractureComputer Graphics Forum10.1111/cgf.1395339:2(569-583)Online publication date: 13-Jul-2020
  • (2019)Simulation and Visualization of Ductile Fracture with the Material Point MethodProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/33402592:2(1-20)Online publication date: 26-Jul-2019
  • (2018)Energized Rigid Body FractureProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/32032071:1(1-9)Online publication date: 25-Jul-2018
  • (2017)Issues on the Simulation of Geometric Fractures of Bone ModelsVipIMAGE 201710.1007/978-3-319-68195-5_51(467-475)Online publication date: 13-Oct-2017
  • (2016)Simulating visual geometryProceedings of the 9th International Conference on Motion in Games10.1145/2994258.2994260(31-38)Online publication date: 10-Oct-2016
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media