Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1821748.1821801acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmommConference Proceedingsconference-collections
short-paper

Comparative analysis of time series techniques ARIMA and ANFIS to forecast Wimax traffic

Published: 14 December 2009 Publication History

Abstract

The procedure and main result of a comparative study based on using an autoregressive model and an artificial intelligence technique applied to a Wimax traffic data series forecasting task are presented in this document. The time series forecasting methods being compared are: ANFIS model (Adaptive Network-based Fuzzy Inference Sys-tem) and ARIMA model (Auto-Regressive Integrated Moving Average).
This article aims to present significant data showing each technique performance under the criteria of mean square error sum and the required processing time.
As a result, in this study ARIMA models developed under RATS platforms are compared to the ANFIS models developed through MATLAB.

References

[1]
Alzate, Marco Aurelio. Modelos de tráfico en análisis y control de redes de comunicaciones. En: Revista de ingeniería de la Universidad Distrital Francisco José de Caldas. Bogotá. Vol. 9, No. 1 (Junio 2004); p. 63--87.
[2]
Box, G. E. P. y Jenkins, Gwilym M. Time series analysis: Forecasting and control. Revised Edition. Oakland, California: Editorial Holden-Day, 1976.
[3]
Brockwell, P. J. On continuous-time ARMA processes. En: Handbook of statistics. Elsevier, Amsterdam: Vol. 19, 2001. p. 249--276.
[4]
Camerano Fuentes, Rafael. Teoría de colas. Bogota: Fondo de publicaciones Universidad Distrital Francisco José de Caldas, 1997.
[5]
Correa Moreno, Emilia. Series de tiempo: conceptos básicos. Medellín: Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de matemáticas, 2004.
[6]
Couch, L. Digital and analog communication system. New Jersey: Prentice Hall, 2001.
[7]
Davis, R. A. Maximum likelihood estimation for MA(1) processes with a root on or near the unit circle. In: Econometric theory. Vol. 12, 1996. p. 1--29.
[8]
Dethe, Chandrashekhar y WAKDE D. G. On the prediction of packet process in network traffic using FARIMA time series model. Department of Electronics, College of Engineering, India. 2003.
[9]
Guerrero Guzman, Víctor Manuel. Análisis estadístico de series de tiempo económicas. Segunda edición. México: Editorial Thomson, 2003.
[10]
Halang, Z. Li and Chen, G. Integration of fuzzy logic and chaos theory. Springer, 2006.
[11]
Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference systems. En: IEEE Transactions on systems, man, and cybernetics. Vol. 23, 1993.
[12]
Jang, J.-S. and Mizutani, Sun E. Neuro-fuzzy and soft computing---A computational approach to learning and machine intelligence. Prentice Hall, 1997.
[13]
Makridakis, Spyros G.; Wheelwright, Steven C. y Hyndman, Rob J. Forecasting: methods and applications. Tercera edición. USA: Editorial Wiley, 1997.
[14]
Pajouh, Danech. Methodology for traffic forescating. The French National Institute for Transport and Safety Research (INRETS). Arcuel. 2002.
[15]
Stallings, William. Comunicaciones y redes de computadores. Séptima edición. Madrid: Prentice Hall, 2004.
[16]
Zak, S. Systems and control. Oxford: oxford university Press, 2003.

Cited By

View all
  • (2023)Hyper Parameterized LSTM Models for Predicting NSE Intraday Bias Based on Global Market TrendsIntelligent Human Centered Computing10.1007/978-981-99-3478-2_13(138-146)Online publication date: 15-Jun-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
MoMM '09: Proceedings of the 7th International Conference on Advances in Mobile Computing and Multimedia
December 2009
663 pages
ISBN:9781605586595
DOI:10.1145/1821748
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • Johannes Kepler University

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 December 2009

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ANFIS
  2. ARIMA
  3. Wimax
  4. auto-correlation
  5. stochastic
  6. time series
  7. traffic model

Qualifiers

  • Short-paper

Conference

MoMM '09
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Hyper Parameterized LSTM Models for Predicting NSE Intraday Bias Based on Global Market TrendsIntelligent Human Centered Computing10.1007/978-981-99-3478-2_13(138-146)Online publication date: 15-Jun-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media