Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1871437.1871513acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Travel route recommendation using geotags in photo sharing sites

Published: 26 October 2010 Publication History

Abstract

The ability to create geotagged photos enables people to share their personal experiences as tourists at specific locations and times. Assuming that the collection of each photographer's geotagged photos is a sequence of visited locations, photo-sharing sites are important sources for gathering the location histories of tourists. By following their location sequences, we can find representative and diverse travel routes that link key landmarks. In this paper, we propose a travel route recommendation method that makes use of the photographers' histories as held by Flickr. Recommendations are performed by our photographer behavior model, which estimates the probability of a photographer visiting a landmark. We incorporate user preference and present location information into the probabilistic behavior model by combining topic models and Markov models. We demonstrate the effectiveness of the proposed method using a real-life dataset holding information from 71,718 photographers taken in the United States in terms of the prediction accuracy of travel behavior.

References

[1]
Flickr: http://www.Flickr.com/
[2]
Google Picasa: http://picasa.google.com/
[3]
Yahoo! TRAVEL: http://www.travel.yahoo.com/
[4]
Google Maps: http://maps.google.com/
[5]
T. Hofmann. Collaborative Filtering via Gaussian Probabilistic Latent Semantic Analysis, Annual ACM SIGIR Conference (SIGIR), pp.259--266, 2003.
[6]
T. Iwata, S. Watanabe, T. Yamada, and N. Ueda. Topic Tracking Model for Analyzing Consumer Purchase Behavior, in Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), pp.1427--1432, 2009.
[7]
L. Kennedy, M. Naaman, S. Ahern, R. Nair, and T. Rattenbury. How Flickr Helps us Make Sense of the World: Context and Content in Community-Contributed Media Collections, in Proc. ACM Int. Conf. on Multimedia (ACMMM), pp.631--640, 2007.
[8]
L. Kennedy and M. Naaman. Generating Diverse and Representative Image Search Results for Landmarks, in Proc. Int. Conf. on World Wide Web (WWW), pp.297--306, 2008.
[9]
E. Kalogerakis, O. Vesselova, J. Hays, A. A. Efros, and A. Hertzmann. Image Sequence Geolocation with Human Travel Priors, in Proc. Int. Conf. on Computer Vision (ICCV), pp.253--260, 2009.
[10]
L. Cao, J. Yu, J. Luo, and T. S. Huang. Enhancing Semantic and Geographic Annotation of Web Images via Logistic Canonical Correlation Regression, in Proc. ACM Int. Conf. on Multimedia (ACMMM), pp.125--134, 2009.
[11]
J. Hays and A. A. Efros. IM2GPS: Estimating Geographic Information from a Single Image, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp.1--8, 2008.
[12]
T. Horozov, N. Narasimhan and V. Vasudevan. Using location for personalized POI recommendations in mobile environments, in Proc. Int. Symp. on Applications and the Internet(SAINT), pp.124--129, 2006.
[13]
J. Krumm and E. Horvitz. Predestination: Inferring Destinations from Partial Trajectories, in Proc. Int. Conf. on Ubiquitous Computing (UbiComp), pp.243--260, 2006.
[14]
Y. Zheng, L. Zhang, X. Xie and W. Ma. Mining Interesting Locations and Travel Sequences from GPS Trajectories, in Proc. Int. Conf. on World Wide Web (WWW), pp.791--800, 2009.
[15]
S. Ahern, M. Naaman, R. Nair, and J. Yang. World Explorer: Visualizing Aggregate Data from Unstructured Text in Geo-Referenced Collections, in Proc. ACM/IEEE-CS Joint Conf. on Digital Libraries (JCDL), pp.1--10, 2007.
[16]
A. Jaffe, M. Naaman, T. Tassa, and M. Davis. Generating Summaries and Visualization for Large Collections of Geo-Referenced Photographs, in Proc. ACM Int. Workshop on Multimedia Information Retrieval (MIR), pp.89--98, 2006.
[17]
D. Crandall, L. Backstrom, D. Huttenlocher, and J. Kleinberg. Mapping the World's Photos, In Proc. Int. Conf. on World Wide Web (WWW), pp.761--770, 2009.
[18]
N. Snavely, S. M. Seitz, and R. Szeliski. Photo Tourism: Exploring Photo Collections in 3D, ACM Trans. on Graphics, vol.25, no.3, pp.835--846, 2006.
[19]
N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the World from Internet Photo Collections, Int. J. of Computer Vision (IJCV), vol.8, no.2, pp.189--210, 2008.
[20]
M. D. Choudhury, M. Feldman, S. Amer-Yahia, N. Golbandi, R. Lempel and C. Yu. Constructing Travel Itineraries from Tagged Geo-Temporal Breadcrumbs, in Proc. Int. Conf. on World Wide Web (WWW), pp.1083--1084, 2010.
[21]
T. Hofmann. Probabilistic Latent Semantic Analysis, in Proc. Conf. on Uncertainty in Artificial Intelligence (UAI), pp.289--296, 1999.
[22]
D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation, Journal of Machine Learning Research (JMLR), vol. 3, pp.993--1022, 2003.
[23]
D. Gildea and T. Hofmann. Topic-based Language Models Using EM, in Proc. EUROSPEECH, pp.2167--2170, 1999.
[24]
F. Giannotti, M. Nanni, D. Perdreschi and F. Pinelli. Trajectory Pattern Mining, In Proc. Int. Conf. on Knowledge Discovery and Data Mining (KDD), pp.330--339, 2007.
[25]
J. L. Herlocker, J. A. Konstan, L. G. Terveen and J. T. Riedl. Evaluating collaborative filtering recommender systems, ACM Trans. on Information systems (TOIS), vol.22, no.1, pp.5--53, 2004.
[26]
D. Ashbrook and T. Starner. Using GPS to Learn Significant Locations and Predict Movement across Multiple Users, Personal and Ubiquitous Computing, vol.7, no.5, pp.275--286, 2003.
[27]
G. Navarro. A guided tour to approximate string matching, ACM Comput. Surv. (CSUR), vol. 33, no.1, pp.31--88, 2001.

Cited By

View all
  • (2023)An Introduction to Various Parameters of the Point of InterestArtificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications10.2174/9789815136746123010012(189-204)Online publication date: 14-Aug-2023
  • (2023)Towards a Greener and Fairer Transportation System: A Survey of Route Recommendation TechniquesACM Transactions on Intelligent Systems and Technology10.1145/362782515:1(1-57)Online publication date: 19-Dec-2023
  • (2023)Multi-Level Visual Similarity Based Personalized Tourist Attraction Recommendation Using Geo-Tagged PhotosACM Transactions on Knowledge Discovery from Data10.1145/358201517:7(1-18)Online publication date: 6-Apr-2023
  • Show More Cited By

Index Terms

  1. Travel route recommendation using geotags in photo sharing sites

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CIKM '10: Proceedings of the 19th ACM international conference on Information and knowledge management
      October 2010
      2036 pages
      ISBN:9781450300995
      DOI:10.1145/1871437
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 26 October 2010

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. geo-referenced photographs
      2. geolocation
      3. photographer behavior model
      4. travel route recommendation

      Qualifiers

      • Research-article

      Conference

      CIKM '10

      Acceptance Rates

      Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

      Upcoming Conference

      CIKM '25

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)55
      • Downloads (Last 6 weeks)5
      Reflects downloads up to 01 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)An Introduction to Various Parameters of the Point of InterestArtificial Intelligence and Data Science in Recommendation System: Current Trends, Technologies and Applications10.2174/9789815136746123010012(189-204)Online publication date: 14-Aug-2023
      • (2023)Towards a Greener and Fairer Transportation System: A Survey of Route Recommendation TechniquesACM Transactions on Intelligent Systems and Technology10.1145/362782515:1(1-57)Online publication date: 19-Dec-2023
      • (2023)Multi-Level Visual Similarity Based Personalized Tourist Attraction Recommendation Using Geo-Tagged PhotosACM Transactions on Knowledge Discovery from Data10.1145/358201517:7(1-18)Online publication date: 6-Apr-2023
      • (2023)RNTrajRec: Road Network Enhanced Trajectory Recovery with Spatial-Temporal Transformer2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00069(829-842)Online publication date: Apr-2023
      • (2023)A hybrid recommender system using topic modeling and prefixspan algorithm in social mediaComplex & Intelligent Systems10.1007/s40747-022-00958-59:4(4457-4482)Online publication date: 17-Jan-2023
      • (2023)GPS data on tourists: a spatial analysis on road networksAStA Advances in Statistical Analysis10.1007/s10182-023-00484-w108:3(477-499)Online publication date: 3-Nov-2023
      • (2023)User Interest Based POI Recommendation Considering the Impact of Weather DetailsProceedings of International Conference on Advanced Communications and Machine Intelligence10.1007/978-981-99-2768-5_17(189-199)Online publication date: 23-Jul-2023
      • (2023)Promoting Sustainable Travel Through a Web-Based Tourism Support SystemIntelligence for Future Cities10.1007/978-3-031-31746-0_14(261-282)Online publication date: 2-Jun-2023
      • (2022)IT-PMF: A Novel Community E-Commerce Recommendation Method Based on Implicit TrustMathematics10.3390/math1014240610:14(2406)Online publication date: 9-Jul-2022
      • (2022)A Fortunate Refining Trip Recommendation ModelElectronics10.3390/electronics1115245911:15(2459)Online publication date: 7-Aug-2022
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media