Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1978942.1979385acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Geckos: combining magnets and pressure images to enable new tangible-object design and interaction

Published: 07 May 2011 Publication History

Abstract

In this paper we present Geckos, a new type of tangible objects which are tracked using a Force-Sensitive Resistance sensor. Geckos are based on low-cost permanent magnets and can also be used on non-horizontal surfaces. Unique pressure footprints are used to identify each tangible Gecko. Two types of tangible object designs are presented: Using a single magnet in combination with felt pads provides new pressure-based interaction modalities. Using multiple separate magnets it is possible to change the marker footprint dynamically and create new haptic experiences. The tangible object design and interaction are illustrated with example applications. We also give details on the feasibility and benefits of our tracking approach and show compatibility with other tracking technologies.

Supplementary Material

MP4 File (paper973.mp4)

References

[1]
Bartindale, T. and Harrison, C. Stacks on the surface: resolving physical order with masked fiducial markers. In Proc. ITS'09, ACM Press (2009), 57--60.
[2]
Baudisch, P., Becker, T., and Rudeck, F. Lumino: tangible blocks for tabletop computers based on glass fiber bundles. In Proc. CHI '10. ACM Press (2010), 1165--1174.
[3]
Crevoisier, A. and Polotti, P. Tangible acoustic inter-faces and their applications for the design of new musical instruments. In Proc. NIME '05, 97--100.
[4]
Echtler, F., Huber, M., Klinker, G. Hand tracking for enhanced gesture recognition on interactive multi-touch surfaces, Technical Report TUM-I-07--21, Technische Universitat Munchen - Institut fur Informatik (2007).
[5]
Fitzmaurice, W., Ishii, H., and Buxton, W. Bricks: Laying the Foundations for Graspable User Interfaces. In Proc. CHI '95, ACM Press (1995), 442--"449.
[6]
Guimbretiere, F., V. Fluid Interaction for High Resolution Wall-Size Displays. Ph.D. Dissertation. Stanford University, 2002.
[7]
Guo, C., and Sharlin, E. Exploring the Use of Tangible User Interfaces for Human-Robot Interaction: A Comparative Study. In Proc. CHI '08, ACM Press (2008), 121--130.
[8]
Haller, M., Leitner, J., Seifried, T., Wallace, J. R., Scott, S. D., Richter, C., Brandl, P., Gokcezade, A., Hunter, S. The NiCE Discussion Room: Integrating Paper and Digital Media to Support Co-Located Group Meetings. In Proc. CHI '10, ACM Press (2010), 609--618.
[9]
Han, J. Y. Low-cost multi-touch sensing through frustrated total internal reflection. In Proc. UIST '05, ACM Press (2005), 115--118.
[10]
Holzmann, C., Hader, A., Towards tabletop interaction with everyday artifacts via pressure imaging. In Proc. TEI'10, ACM Press (2010), 77--84.
[11]
http://kommerz.at/en/Produkte/MRI.html
[12]
http://multi-touch-screen.com/product_plus.html
[13]
http://uk.mimio.com/en-GB.aspx
[14]
http://www.blueobject.de/Seiten/produkte/Magnetsegel/magfloor/magfloor_einstieg.html
[15]
http://www.displax.com/en/future-labs/multitouch-technology.html
[16]
http://www.jazzmutant.com/lemur_overview.php
[17]
http://www.microsoft.com/surface/en/us/default.aspx
[18]
http://www.naturalpoint.com/optitrack/
[19]
http://www.sensibleui.com/
[20]
Ishii, H., Ullmer, B. Tangible bits: towards seamless interfaces between people, bits and atoms. In Proc. CHI '97, ACM (1997), 234--"241.
[21]
Jackson, D., Bartindale, T. and Olivier, P. FiberBoard: compact multi-touch display using channeled light. In Proc. ITS'09, ACM Press (2009), 25--28.
[22]
Jorda, S, Geiger, G., Alonso, M., Kaltenbrunner, M. The reacTable: exploring the synergy between live mu-sic performance and tabletop tangible interfaces. In Proc. TEI '07, ACM Press (2007), 139--146
[23]
Klemmer, S. R., Newman, M. W., Farrell, R., Bilezikjian, M., and Landay, J. A. The designers' outpost: a tangible interface for collaborative web site. In Proc. UIST '01. ACM Press (2001), 1--10.
[24]
L. Tesler, 'The Smalltalk Environment', Byte, August 1981, 90--147.
[25]
Matsushita, N. and Rekimoto, J. HoloWall: designing a finger, hand, body, and object sensitive wall. In Proc. UIST '97, ACM Press (1997), 209--210.
[26]
Pangaro, G., Maynes-Aminzade, D., Ishii, H. The actuated workbench: computer-controlled actuation in tabletop tangible interfaces, In Proc. UIST '02, ACM Press (2002), 181--190.
[27]
Paradiso, J. A., Hsiao, K., and Benbasat, A. Tangible music interfaces using passive magnetic tags. In Proc. NIME'01, National University of Singapore (2001), 1--4.
[28]
Patten, J., Ishii, H., Hines, J., and Pangaro, G. Sense-table: a wireless object tracking platform for tangible user interfaces. In Proc. CHI '01, ACM Press 2001, 25--260.
[29]
Pintaric, T. and Kaufmann, H. A rigid-body target design methodology for optical pose-tracking systems. In Proc. VRST '08. ACM Press (2008), 73--76.
[30]
Rosenberg, I. and Perlin, K. 2009. The UnMousePad: an interpolating multi-touch force-sensing input pad. In Proc. SIGGRAPH'09, ACM Press (2009).
[31]
Saund, E., Lank, e. Stylus input and editing without prior selection of mode. In UIST '03. ACM Press (2003), 213--216.
[32]
Schmidt, A., Strohbach, M., van Laerhoven, K., and Gellersen, H. Ubiquitous interaction - using surfaces in everyday environments as pointing devices. In Proc. ERCIM'02. Springer-Verlag (2002), 263--279.
[33]
Tseng, T., Bryant, C. and Blikstein, P. Mechanix: An Interactive Display for Exploring Engineering Design through a Tangible Interface. In Proc. TEI'11, ACM Press (2011).
[34]
Van Laerhoven, K., Villar, N., Hakansson, M., Gellersen, H. Pin&Play: bringing power and networking to wall-mounted appliances. In Proc. IWNA'02, IEEE Press (2002), 131--136.
[35]
Ward, A., Jones, A., and Hopper, A. A new location technique for the active office. In IEEE Pers. Comm. Vol. 4, Issue 5, IEEE Press (1997), 42--47.
[36]
Weiss, M. Schwarz, F., Jakubowski, S., and Borchers, J. Madgets: Actuating Widgets on Interactive Tabletops. In Proc. UIST '10, ACM Press (2010), 293--302.
[37]
Weiss, M., Wagner, J., Jansen, Y., Jennings, R., Kho-shabeh, R., Hollan, J.D., and Borchers, J. SLAP wid-gets: bridging the gap between virtual and physical controls on tabletops. In Proc. CHI '09, ACM Press (2009), 481--"490.
[38]
Xu, D., Read, J., Mazzone, E., Bron, M. Designing and Testing a Tangible Interface Prototype. In Proc. IDC '07, ACM Press (2007), 25--28.
[39]
Zeleznik, R., Miller, T. Fluid inking: augmenting the medium of free-form inking with gestures. In Proc. GI '06. Canadian Information Processing Society (2006), 155--160.

Cited By

View all
  • (2024)Interactive Visualization on Large High‐Resolution Displays: A SurveyComputer Graphics Forum10.1111/cgf.1500143:6Online publication date: 30-Apr-2024
  • (2023)SurfAirs: Surface + Mid-air Input for Large Vertical DisplaysProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580877(1-15)Online publication date: 19-Apr-2023
  • (2022)Mixels: Fabricating Interfaces using Programmable Magnetic PixelsProceedings of the 35th Annual ACM Symposium on User Interface Software and Technology10.1145/3526113.3545698(1-12)Online publication date: 29-Oct-2022
  • Show More Cited By

Index Terms

  1. Geckos: combining magnets and pressure images to enable new tangible-object design and interaction
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      CHI '11: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      May 2011
      3530 pages
      ISBN:9781450302289
      DOI:10.1145/1978942
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 07 May 2011

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. force-sensitive resistance
      2. physical marker
      3. pressure image
      4. tangible
      5. vertical display

      Qualifiers

      • Research-article

      Conference

      CHI '11
      Sponsor:

      Acceptance Rates

      CHI '11 Paper Acceptance Rate 410 of 1,532 submissions, 27%;
      Overall Acceptance Rate 6,199 of 26,314 submissions, 24%

      Upcoming Conference

      CHI 2025
      ACM CHI Conference on Human Factors in Computing Systems
      April 26 - May 1, 2025
      Yokohama , Japan

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)10
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 16 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Interactive Visualization on Large High‐Resolution Displays: A SurveyComputer Graphics Forum10.1111/cgf.1500143:6Online publication date: 30-Apr-2024
      • (2023)SurfAirs: Surface + Mid-air Input for Large Vertical DisplaysProceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3580877(1-15)Online publication date: 19-Apr-2023
      • (2022)Mixels: Fabricating Interfaces using Programmable Magnetic PixelsProceedings of the 35th Annual ACM Symposium on User Interface Software and Technology10.1145/3526113.3545698(1-12)Online publication date: 29-Oct-2022
      • (2022)NFCStack: Identifiable Physical Building Blocks that Support Concurrent Construction and Frictionless InteractionProceedings of the 35th Annual ACM Symposium on User Interface Software and Technology10.1145/3526113.3545658(1-12)Online publication date: 29-Oct-2022
      • (2022)Self-Actuated Displays for Vertical SurfacesHuman-Computer Interaction – INTERACT 201510.1007/978-3-319-22723-8_23(282-299)Online publication date: 10-Mar-2022
      • (2021)UltraPower: Powering Tangible & Wearable Devices with Focused UltrasoundProceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3430524.3440620(1-13)Online publication date: 14-Feb-2021
      • (2021)Combining Touchscreens with Passive Rich-ID Building Blocks to Support Context Construction in Touchscreen InteractionsProceedings of the 2021 CHI Conference on Human Factors in Computing Systems10.1145/3411764.3445722(1-14)Online publication date: 6-May-2021
      • (2021)WallTokens: Surface Tangibles for Vertical DisplaysProceedings of the 2021 CHI Conference on Human Factors in Computing Systems10.1145/3411764.3445404(1-13)Online publication date: 6-May-2021
      • (2020)ForceStampsProceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction10.1145/3374920.3374924(273-285)Online publication date: 9-Feb-2020
      • (2020)PneuModule: Using Inflatable Pin Arrays for Reconfigurable Physical Controls on Pressure-Sensitive Touch SurfacesProceedings of the 2020 CHI Conference on Human Factors in Computing Systems10.1145/3313831.3376838(1-14)Online publication date: 21-Apr-2020
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media