Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1989323.1989395acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Data generation using declarative constraints

Published: 12 June 2011 Publication History

Abstract

We study the problem of generating synthetic databases having declaratively specified characteristics. This problem is motivated by database system and application testing, data masking, and benchmarking. While the data generation problem has been studied before, prior approaches are either non-declarative or have fundamental limitations relating to data characteristics that they can capture and efficiently support. We argue that a natural, expressive, and declarative mechanism for specifying data characteristics is through cardinality constraints; a cardinality constraint specifies that the output of a query over the generated database have a certain cardinality. While the data generation problem is intractable in general, we present efficient algorithms that can handle a large and useful class of constraints. We include a thorough empirical evaluation illustrating that our algorithms handle complex constraints, scale well as the number of constraints increase, and outperform applicable prior techniques.

References

[1]
P. Abbeel, D. Koller, and A. Y. Ng. Learning factor graphs in polynomial time and sample complexity. J. of Machine Learning Research, 7:1743--1788, 2006.
[2]
A. Aboulnaga, J. F. Naughton, and C. Zhang. Generating synthetic complex-structured XML data. In WebDB, pages 79--84, 2001.
[3]
W. Aiello, F. Chung, and L. Lu. A random graph model for power law graphs. Experimental Mathematics, 10(1):53--66, 2001.
[4]
D. Barbosa, A. O. Mendelzon, J. Keenleyside, et al. ToXgene: An extensible template-based data generator for XML. In WebDB, pages 49--54, 2002.
[5]
C. Binnig, D. Kossmann, and E. Lo. Reverse query processing. In ICDE, pages 506--515, 2007.
[6]
C. Binnig, D. Kossmann, E. Lo, et al. QAGen: generating query-aware test databases. In SIGMOD, pages 341--352, 2007.
[7]
N. Bruno and S. Chaudhuri. Flexible database generators. In VLDB, pages 1097--1107, 2005.
[8]
N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A multidimensional workload-aware histogram. In SIGMOD, pages 211--222, 2001.
[9]
N. Bruno, S. Chaudhuri, and D. Thomas. Generating queries with cardinality constraints for dbms testing. IEEE Trans. Knowl. Data Eng., 18(12):1271--1275, 2006.
[10]
M. Castellanos, B. Zhang, I. Jimenez, et al. Data desensitization of customer data for use in optimizer performance experiments. In ICDE, pages 1081--1092, 2010.
[11]
S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. SIGMOD Record, 26(1):65--74, 1997.
[12]
S. Cohen. Generating XML structure using examples and constraints. PVLDB, 1(1):490--501, 2008.
[13]
C. Dwork. Differential privacy. International Colloquium on Automata, languages and programming, 2006.
[14]
L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic models. In SIGMOD, pages 461--472, 2001.
[15]
J. Gray, P. Sundaresan, S. Englert, et al. Quickly generating billion-record synthetic databases. In SIGMOD, pages 243--252, 1994.
[16]
J. M. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished manuscript.
[17]
K. Houkjaer, K. Torp, and R. Wind. Simple and realistic data generation. In VLDB, pages 1243--1246, 2006.
[18]
IBM DB2 test data generator. http://www.ibm.com/developerworks/data/library/techarticle/dm-0706salko%suo/index.html.
[19]
B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer Verlag, 2005.
[20]
S. Lattanzi and D. Sivakumar. Affiliation networks. In Proceedings of the 41st annual ACM symposium on Theory of computing, pages 427--434. ACM, 2009.
[21]
J. Leskovec, D. Chakrabarti, J. M. Kleinberg, et al. Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In PKDD, pages 133--145, 2005.
[22]
E. Lo, N. Cheng, and W.-K. Hon. Generating databases for query workloads. In VLDB, pages 848--859, 2010.
[23]
A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1):3, 2007.
[24]
H. Mannila and K.-J. Raiha. Automatic generation of test data for relational queries. J. Comp. Syst. Sci, 38(2):240--258, 1989.
[25]
C. Olston, S. Chopra, and U. Srivastava. Generating example data for dataflow programs. In SIGMOD, pages 245--256, 2009.
[26]
J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988.
[27]
C. Re and D. Suciu. Understanding cardinality estimation using entropy maximization. In PODS, pages 53--64, 2010.
[28]
U. Srivastava, P. J. Haas, V. Markl, et al. ISOMER: consistent histogram construction using query feedback. In ICDE, 2006.
[29]
L. Sweeney. k-Anonymity: A Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst, 10(5):557--570, 2002.
[30]
T. Syrjanen. Logic Programs and Cardinality Constraints: Theory and Practice. PhD thesis, Helsinki University of Technology, 2009.
[31]
R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. of Comput, 13(3):566--579, 1984.
[32]
J. Winick and S. Jamin. Inet-3.0: Internet topology generator, 2002. Technical Report CSE-TR-456-02, University of Michigan, Ann Arbor.
[33]
W. E. Winkler. Masking and re-identification methods for public-use microdata: Overview and research problems. In Privacy in Statistical Databases, pages 231--246, 2004.

Cited By

View all
  • (2024)Win-Win: On Simultaneous Clustering and Imputing over Incomplete DataProceedings of the VLDB Endowment10.14778/3681954.368198217:11(3045-3057)Online publication date: 30-Aug-2024
  • (2024)Performance Truthfulness of Differential Privacy for DB TestingProceedings of the Tenth International Workshop on Testing Database Systems10.1145/3662165.3662762(30-35)Online publication date: 9-Jun-2024
  • (2024)Lauca: A Workload Duplicator for Benchmarking Transactional Database PerformanceIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.336011636:7(3180-3194)Online publication date: Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '11: Proceedings of the 2011 ACM SIGMOD International Conference on Management of data
June 2011
1364 pages
ISBN:9781450306614
DOI:10.1145/1989323
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 June 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. benchmarking
  2. constraints
  3. data generation
  4. masking
  5. testing

Qualifiers

  • Research-article

Conference

SIGMOD/PODS '11
Sponsor:

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)49
  • Downloads (Last 6 weeks)3
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Win-Win: On Simultaneous Clustering and Imputing over Incomplete DataProceedings of the VLDB Endowment10.14778/3681954.368198217:11(3045-3057)Online publication date: 30-Aug-2024
  • (2024)Performance Truthfulness of Differential Privacy for DB TestingProceedings of the Tenth International Workshop on Testing Database Systems10.1145/3662165.3662762(30-35)Online publication date: 9-Jun-2024
  • (2024)Lauca: A Workload Duplicator for Benchmarking Transactional Database PerformanceIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.336011636:7(3180-3194)Online publication date: Jul-2024
  • (2024)Mirage: Generating Enormous Databases for Complex Workloads2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00306(3989-4001)Online publication date: 13-May-2024
  • (2024)$$\text {Touchstone}^{+}$$ : Query Aware Database Generation for Match OperatorsDatabase Systems for Advanced Applications10.1007/978-981-97-5552-3_18(266-282)Online publication date: 1-Oct-2024
  • (2023)Generating Test Databases for Database-Backed ApplicationsProceedings of the 45th International Conference on Software Engineering10.1109/ICSE48619.2023.00173(2048-2059)Online publication date: 14-May-2023
  • (2023)Unshackling Database Benchmarking from Synthetic Workloads2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00292(3659-3662)Online publication date: Apr-2023
  • (2023)Synthetic Data Generation for Enterprise DBMS2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00274(3585-3588)Online publication date: Apr-2023
  • (2023)Generating valid test data through data cloningFuture Generation Computer Systems10.1016/j.future.2023.02.020144(179-191)Online publication date: Jul-2023
  • (2022)A critical analysis of recursive model indexesProceedings of the VLDB Endowment10.14778/3510397.351040515:5(1079-1091)Online publication date: 18-May-2022
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media