Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2018436.2018456acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Free access

Clearing the RF smog: making 802.11n robust to cross-technology interference

Published: 15 August 2011 Publication History

Abstract

Recent studies show that high-power cross-technology interference is becoming a major problem in today's 802.11 networks. Devices like baby monitors and cordless phones can cause a wireless LAN to lose connectivity. The existing approach for dealing with such high-power interferers makes the 802.11 network switch to a different channel; yet the ISM band is becoming increasingly crowded with diverse technologies, and hence many 802.11 access points may not find an interference-free channel.
This paper presents TIMO, a MIMO design that enables 802.11n to communicate in the presence of high-power cross-technology interference. Unlike existing MIMO designs, however, which require all concurrent transmissions to belong to the same technology, TIMO can exploit MIMO capabilities to decode in the presence of a signal from a different technology, hence enabling diverse technologies to share the same frequency band. We implement a prototype of TIMO in GNURadio-USRP2 and show that it enables 802.11n to communicate in the presence of interference from baby monitors, cordless phones, and microwave ovens, transforming scenarios with a complete loss of connectivity to operational networks.

Supplementary Material

MP4 File (sigcomm_5_3.mp4)

References

[1]
20 Myths of Wi-Fi Interference: Dispel Myths to Gain High-Performing and Reliable Wireless, White paper C11-44927.1-00, Cisco, December 2007.
[2]
2.4GHz 4-Channel Wireless Receiver and 4 Wireless Infrared Color Cameras, Genica. www.genica.com.
[3]
AirMaestro Spectrum Analysis Solution, Bandspeed. www.bandspeed.com.
[4]
ArrayComm. www.arraycomm.com.
[5]
Bluetooth Basics, Bluetooth SIG Inc., 2011. www.bluetooth.com.
[6]
Cisco CleanAir Technology, Cisco. www.cisco.com/en/US/netsol/ns1070/index.html.
[7]
Estimating the Utilisation of Key License-Exempt Spectrum Bands, Final Report REP003, Mass Consultants Ltd., Ofcom, April 2009.
[8]
Evaluating Interference in Wireless LANs: Recommended Practice, White paper FPG 2010-135.1, Farpoint Group Technical Note, April 2010.
[9]
Fury GPS Disciplined Oscillator, Jackson Labs. www.jackson-labs.com.
[10]
Miercom: Cisco CleanAir Competitive Testing, Lab Test Rerpot DR100409D, Miercom, April 2010.
[11]
Motorola Airdefense Solutions, Motorola www.airdefense.net.
[12]
Uniden TRU4465: Dual Handset Powermax 2.4GHz Cordless Systems, Uniden. www.uniden.com.
[13]
Universal Software Radio Peripheral, Ettus Inc www.ettus.com.
[14]
Wireless RF Interference Customer Survey Result, White paper C11-609300-00, Cisco, 2010.
[15]
Local and metropolitan area networks--specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11, October 2009.
[16]
E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly. Design and Experimental Evaluation of Multi-user Beamforming in Wireless LANs. In Proc. ACM MobiCom 2010, pages 197--208, Chicago, IL, 2010.
[17]
Bandspeed. Understanding the Effects of Radio Frequency (RF) Interference on WLAN performance and Security, 2010.
[18]
L. Cao, L. Yang, and H. Zheng. The Impact of Frequency-Agility on Dynamic Spectrum Sharing. In Proc. IEEE DySPAN 2010, pages 1--12, Singapore, 2010.
[19]
R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl. A Case for Adapting Channel Width in Wireless Networks. In Proc. ACM SIGCOMM 2008, pages 135--146, Seattle, WA, 2008.
[20]
S. Gollakota and D. Katabi. Zigzag Decoding: Combating Hidden Terminals in Wireless Networks. In Proc. ACM SIGCOMM 2008, pages 159--170, Seattle, WA, 2008.
[21]
S. Gollakota, S. D. Perli, and D. Katabi. Interferenc Alignment and Cancellation. In Proc. ACM SIGCOMM 2009, pages 159--170, Barcelona, Spain, 2009.
[22]
D. Halperin, J. Ammer, T. Anderson, and D. Wetherall Interference Cancellation: Better Receivers for a New Wireless MAC. In Proc. ACM HotNets 2007, Atlanta, GA, 2007.
[23]
Y. He, J. Fang, J. Zhang, H. Shen, K. Tan, and Y. Zhang. MPAP: Virtualization Architecture for Heterogenous Wireless APs. In Proc. ACM SIGCOMM 2010, pages 475--476, New Delhi, India, 2010.
[24]
J. Heiskala and J. Terry. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams Publishing, 2001.
[25]
K. Jamieson and H. Balakrishnan. PPR: Partial Packet Recover for Wireless Networks. In Proc. ACM SIGCOMM 2007, pages 409--420, Kyoto, Japan, 2007.
[26]
S. Katti, S. Gollakota, and D. Katabi. Embracing Wireless Interference:Analog Network Coding. In Proc. ACM SIGCOMM 2007, pages 397--408, Kyoto, Japan, 2007.
[27]
S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbo Level Network Coding for Wireless Mesh Networks. In Proc. ACM SIGCOMM 2008, pages 401--412, Seattle, WA, 2008.
[28]
J. Ketchum, S. Nanda, R. Walton, S. Howard, M. Wallace, B. Bjerke, I. Medvedev, S. Abraham, A. Meylan, and S. Surineni. System Description and Operating Principles for High Throughput Enhancements to 802.11, QUALCOMM Inc., April 2005.
[29]
K. Lakshminarayanan, S. Sapra, S. Seshan, and P. Steenkiste. RFDump: An Architecture for Monitoring the Wireless Ether. In Proc. CoNEXT 2009, pages 253--264, Rome, Italy, 2009.
[30]
S. Mishra, R. Brodersen, S. Brink, and R. Mahadevappa. Detect and Avoid: An Ultra-Wideband/WiMAX Coexistence Mechanism. IEEE Communications Magazine, 45(6):68--75, June 2007.
[31]
T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan. Load-Aware Spectrum Distribution in Wireless LANs. In Proc. IEEE ICNP 2008, pages 137--146, Orlando, FL, 2008.
[32]
H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat Learning to Share: Narrowband-Friendly Wideband Networks. In Proc. ACM SIGCOMM 2008, pages 147--158, Seattle, WA, 2008.
[33]
SourceForge. iperf.sourceforge.net.
[34]
T. Taher, M. Misurac, J. LoCicero, and D. Ucci. Microwave Oven Signal Modelling. In Proc. IEEE WCNC 2008, pages 1235--1238, Las Vegas, NV, 2008.
[35]
K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and G. M. Voelker. SAM: Enabling Practical Spatial Multiple Access in Wireless LAN. In Proc. ACM MobiCom 2009, pages 49--60, Beijing, China, 2009.
[36]
D. Tse and P. Vishwanath. Fundamentals of Wireles Communications. Cambridge University Press, May 2005.
[37]
M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-Laye Wireless Bit Rate Adaptation. In Proc. ACM SIGCOMM 2009, pages 3--14, Barcelona, Spain, 2009.
[38]
L. Yang, W. Hou, L. Cao, B. Y. Zhao, and H. Zheng. Supporting Demanding Wireless Applications with Frequency-Agile Radios. In Proc. USENIX NSDI 2010, pages 5--5, San Jose, CA, 2010.
[39]
P. Zetterberg. Experimental Investigation of TDD Reciprocit Based Zero-Forcing Transmit Precoding. EURASIP J. Adv. Signal Process, 2011:5:1-5:10, January 2011.
[40]
H. Zhao, Y. Q. Shi, and N. Ansari. Hiding Data in Multimedia Streaming over Networks. In Proc. CNSR 2010, pages 50--55, Montreal, QC, 2010.

Cited By

View all
  • (2024)Exploiting Successive Interference Cancellation for Spectrum Sharing Over Unlicensed BandsIEEE Transactions on Mobile Computing10.1109/TMC.2023.326419523:3(2438-2455)Online publication date: Mar-2024
  • (2024)DL-SIC: Deep Learning Aided Successive Interference Cancellation in Shared Spectrum2024 International Conference on Computing, Networking and Communications (ICNC)10.1109/ICNC59896.2024.10556346(754-760)Online publication date: 19-Feb-2024
  • (2024)Jamming Attack and Defense Based on Deep Learning in Cross-Technology Communication2024 International Conference on Cloud and Network Computing (ICCNC)10.1109/ICCNC63989.2024.00027(126-133)Online publication date: 31-May-2024
  • Show More Cited By

Index Terms

  1. Clearing the RF smog: making 802.11n robust to cross-technology interference

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      SIGCOMM '11: Proceedings of the ACM SIGCOMM 2011 conference
      August 2011
      502 pages
      ISBN:9781450307970
      DOI:10.1145/2018436
      • cover image ACM SIGCOMM Computer Communication Review
        ACM SIGCOMM Computer Communication Review  Volume 41, Issue 4
        SIGCOMM '11
        August 2011
        480 pages
        ISSN:0146-4833
        DOI:10.1145/2043164
        Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 15 August 2011

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. cognitive mimo
      2. cross-technology interference

      Qualifiers

      • Research-article

      Conference

      SIGCOMM '11
      Sponsor:
      SIGCOMM '11: ACM SIGCOMM 2011 Conference
      August 15 - 19, 2011
      Ontario, Toronto, Canada

      Acceptance Rates

      SIGCOMM '11 Paper Acceptance Rate 32 of 223 submissions, 14%;
      Overall Acceptance Rate 462 of 3,389 submissions, 14%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)132
      • Downloads (Last 6 weeks)15
      Reflects downloads up to 30 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Exploiting Successive Interference Cancellation for Spectrum Sharing Over Unlicensed BandsIEEE Transactions on Mobile Computing10.1109/TMC.2023.326419523:3(2438-2455)Online publication date: Mar-2024
      • (2024)DL-SIC: Deep Learning Aided Successive Interference Cancellation in Shared Spectrum2024 International Conference on Computing, Networking and Communications (ICNC)10.1109/ICNC59896.2024.10556346(754-760)Online publication date: 19-Feb-2024
      • (2024)Jamming Attack and Defense Based on Deep Learning in Cross-Technology Communication2024 International Conference on Cloud and Network Computing (ICCNC)10.1109/ICCNC63989.2024.00027(126-133)Online publication date: 31-May-2024
      • (2023)RF-SIFTER: Sifting Signals at Layer-0.5 to Mitigate Wideband Cross-Technology Interference for IoTProceedings of the 29th Annual International Conference on Mobile Computing and Networking10.1145/3570361.3592513(1-14)Online publication date: 2-Oct-2023
      • (2023)Single-Antenna Jammers in MIMO-OFDM Can Resemble Multi-Antenna JammersIEEE Communications Letters10.1109/LCOMM.2023.331981827:11(3103-3107)Online publication date: Nov-2023
      • (2023)Physical Level CTC Based on Cross DemappingCross-Technology Communication for Internet of Things10.1007/978-981-99-3719-6_4(87-121)Online publication date: 26-May-2023
      • (2022)AiFiProceedings of the 20th ACM Conference on Embedded Networked Sensor Systems10.1145/3560905.3568537(134-148)Online publication date: 6-Nov-2022
      • (2022)Combating Packet Collisions Using Non-Stationary Signal Scaling in LPWANsIEEE/ACM Transactions on Networking10.1109/TNET.2021.313170430:3(1104-1117)Online publication date: Jun-2022
      • (2022)Cross Technology Distributed MIMO for Low Power IoTIEEE Transactions on Mobile Computing10.1109/TMC.2020.302921821:5(1609-1624)Online publication date: 1-May-2022
      • (2022)Physical-Level Parallel Inclusive Communication for Heterogeneous IoT DevicesIEEE INFOCOM 2022 - IEEE Conference on Computer Communications10.1109/INFOCOM48880.2022.9796876(380-389)Online publication date: 2-May-2022
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media