Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
demonstration

Software for exact integration of polynomials over polyhedra

Published: 23 January 2012 Publication History

Abstract

We are interested in quickly computing the exact value of integrals of polynomial functions over domains that are decomposable into convex polyhedra (e.g., a tetrahedral or cubical mesh decomposition of space). We describe a software implementation, part of the software LattE, and provide benchmark computations.

References

[1]
Velleda Baldoni, Nicole Berline, Jesús A. De Loera, Matthias Köppe, and Michàle Vergne. How to integrate a polynomial over a simplex. Mathematics of Computation, 80(273):297--325, 2011.
[2]
Alexander I. Barvinok. Computation of exponential integrals. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Teor. Slozhn. Vychisl., 5:149--162, 175--176, 1991. translation in J. Math. Sci. 70 (1994), no. 4, 1934--1943.
[3]
Alexander I. Barvinok. Partition functions in optimization and computational problems. Algebra i Analiz, 4:3--53, 1992. translation in St. Petersburg Math. J. 4 (1993), no. 1, pp. 1--49.
[4]
Matthias Beck, Christian Haase, and Frank Sottile. Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones. The Mathematical Intelligencer, 31:9--17, 2009. 10.1007/s00283-008-9013-y.
[5]
Michel Brion. Points entiers dans les polyàdres convexes. Ann. Sci. École Norm. Sup., 21(4):653--663, 1988.
[6]
Benno Büeler, Andreas Enge, and Komei Fukuda. Exact volume computation for polytopes: A practical study. In Gil Kalai and Günter M. Ziegler, editors, Polytopes -- Combinatorics and Computation, volume 29 of DMV-Seminars, Basel, 2000. Birkhäuser Verlag. http://www.math.u-bordeaux1.fr/~enge/index.php.
[7]
Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida. Effective lattice point counting in rational convex polytopes. Journal of Symbolic Computation, 38(4):1273--1302, 2004.
[8]
Peter Gritzmann and Victor Klee. On the complexity of some basic problems in computational convexity: II. Volume and mixed volumes. Universität Trier, Mathematik/Informatik, Forschungsbericht, 94-07, 1994.
[9]
Matthias Köppe. A primal Barvinok algorithm based on irrational decompositions. SIAM Journal on Discrete Mathematics, 21(1):220--236, 2007.
[10]
Mark Korenblit and Efraim Shmerling. Algorithm and software for integration over a convex polyhedron. In Andres Iglesias and Nobuki Takayama, editors, Mathematical Software -- ICMS 2006, volume 4151 of Lecture Notes in Computer Science, pages 273--283. Springer Berlin, Heidelberg, 2006. 10.1007/11832225 28.
[11]
Jim Lawrence. Polytope volume computation. Math. Comp., 57(195):259--271, 1991.
[12]
Dominique Lepelley, Ahmed Louichi, and Hatem Smaoui. On Ehrhart polynomials and probability calculations in voting theory. Social Choice and Welfare, 30:363--383, 2008. 10.1007/s00355-007-0236-1.
[13]
H.L. Ong, H.C. Huang, and W.M. Huin. Finding the exact volume of a polyhedron. Advances in Engineering Software, 34(6):351--356, 2003.
[14]
Günter Ziegler. Database of 0--1 polytopes. http://www.math.tu-berlin.de/polymake/examples/. Accessed: 04/13/2011.

Cited By

View all
  • (2023)Collapsed inference for Bayesian deep learningProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669549(78394-78411)Online publication date: 10-Dec-2023
  • (2023)The multipolar elastic fields of ellipsoidal and polytopal plastic inclusionsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rspa.2023.0214479:2276Online publication date: 30-Aug-2023
  • (2023)Multi-collinear splitting kernels for track function evolutionJournal of High Energy Physics10.1007/JHEP07(2023)1852023:7Online publication date: 25-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Communications in Computer Algebra
ACM Communications in Computer Algebra  Volume 45, Issue 3/4
September/December 2011
87 pages
ISSN:1932-2232
EISSN:1932-2240
DOI:10.1145/2110170
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 January 2012
Published in SIGSAM-CCA Volume 45, Issue 3/4

Check for updates

Qualifiers

  • Demonstration

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Collapsed inference for Bayesian deep learningProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3669549(78394-78411)Online publication date: 10-Dec-2023
  • (2023)The multipolar elastic fields of ellipsoidal and polytopal plastic inclusionsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rspa.2023.0214479:2276Online publication date: 30-Aug-2023
  • (2023)Multi-collinear splitting kernels for track function evolutionJournal of High Energy Physics10.1007/JHEP07(2023)1852023:7Online publication date: 25-Jul-2023
  • (2020)Exploring the No-Show Paradox for Condorcet ExtensionsEvaluating Voting Systems with Probability Models10.1007/978-3-030-48598-6_11(251-273)Online publication date: 19-Dec-2020
  • (2019)Exploring the No-Show Paradox for Condorcet Extensions Using Ehrhart Theory and Computer SimulationsProceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems10.5555/3306127.3331735(520-528)Online publication date: 8-May-2019
  • (2019)Advanced SMT techniques for weighted model integrationArtificial Intelligence10.1016/j.artint.2019.04.003Online publication date: Apr-2019
  • (2018)A Metric for Evaluating Neural Input Representation in Supervised Learning NetworksFrontiers in Neuroscience10.3389/fnins.2018.0091312Online publication date: 14-Dec-2018
  • (2017)Weighted model integration with orthogonal transformationsProceedings of the 26th International Joint Conference on Artificial Intelligence10.5555/3171837.3171932(4610-4616)Online publication date: 19-Aug-2017
  • (2017)Efficient weighted model integration via SMT-based predicate abstractionProceedings of the 26th International Joint Conference on Artificial Intelligence10.5555/3171642.3171745(720-728)Online publication date: 19-Aug-2017
  • (2017)FairSquare: probabilistic verification of program fairnessProceedings of the ACM on Programming Languages10.1145/31339041:OOPSLA(1-30)Online publication date: 12-Oct-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media