Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2110497.2110499acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Scientific workflow reuse through conceptual workflows on the virtual imaging platform

Published: 14 November 2011 Publication History

Abstract

An increasing number of scientific experiments are "in-silico": carried out at least partially using computers. Scientific Workflows have become a key tool to model and implement such experiments, but they tangle domain knowledge, technical know-how and non-functional concerns and are, as a result, difficult to understand, reuse or repurpose.
In order to ease Scientific Workflow Reuse, this paper defines a Conceptual Workflow model that is closer to the end-user's domain and intentions. By placing our model higher on the abstraction scale, we can separate concerns and emphasize the in-silico experiment inside the workflow, thus improving readability and re-usability.
The conceptual representation can then be transformed into a regular Abstract Scientific Workflow, exploiting both domain and non-functional knowledge that are captured and harnessed through the use of Semantic Web technologies.

References

[1]
I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amoreira, Y. Potier, and B. Ludäscher. A Framework for the Design and Reuse of Grid Workflows. In Scientific Applications of Grid Computing(LNCS), pages 295--299. 2005.
[2]
R. Barga and D. Gannon. Scientific versus Business Workflows. In Workflows for e-Science, chapter 2, pages 9--16. Springer-Verlag, 2007.
[3]
S. Bechhofer, D. de Roure, M. Gamble, C. Goble, and I. Buchan. Research Objects: Towards Exchange and Reuse of Digital Knowledge. The Future of the Web for Collaborative Science (FWCS), Apr. 2010.
[4]
H. Benoit-Cattin, G. Collewet, B. Belaroussi, H. Saint-Jalmes, and C. Odet. The SIMRI project: a versatile and interactive MRI simulator. Journal of Magnetic Resonance Imaging (JMRI), 173(1):97--115, Mar. 2005.
[5]
S. Bowers, B. Ludäscher, A. Ngu, and T. Critchlow. Enabling Scientific Workflow Reuse through Structured Composition of Dataflow and Control-Flow. In IEEE Workshop on Workflow and Data Flow for Scientific Applications(SciFlow), Atlanta, USA, Apr. 2006.
[6]
D. De Roure, C. Goble, and R. Stevens. The Design and Realisation of the myExperiment Virtual Research Environment for Social Sharing of Workflows. Future Generation Computer Systems (FGCS), 2008.
[7]
W. Frakes and K. Kyo. Software reuse research: status and future. IEEE Transactions on Software Engineering (TSE), 31(7):529--536, July 2005.
[8]
Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble, M. Livny, L. Moreau, and J. Myers. Examining the Challenges of Scientific Workflows. Computer, 40:24--32, 2007.
[9]
Y. Gil, V. Ratnakar, K. Jihie, J. Moody, E. Deelman, P. Gonzales-Calero, and P. Groth. Wings: Intelligent Workflow-Based Design of Computational Experiments. IEEE Intelligent System, 26(1):62--72, Jan. 2011.
[10]
A. Goderis, U. Sattler, P. Lord, and C. Goble. Seven Bottlenecks to Workflow Reuse and Repurposing. In The Semantic Web -- ISWC 2005(LNCS), pages 323--337. Springer, Heidelberg, Germany, 2005.
[11]
D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li, and T. Oinn. Taverna: a tool for building and running workflows of services. Nuclear Instruments and Methods in Physics Research A, 34(Web Server issue):729--732, July 2006.
[12]
J. Jensen. Simulation of advanced ultrasound systems using Field II. In IEEE International Symposium on Biomedial Imaging: Nano to Macro, pages 636--639, Apr. 2004.
[13]
B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler System. Concurrency and Computation: Practice & Experience (CCPE), 18(10):1039 -- 1065, Aug. 2006.
[14]
T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific workflow design for mere mortals. Future Generation Computer Systems (FGCS), 25(5):541--551, 2009.
[15]
C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Z. J. Pastorello, A. Santanche, R. S. Torres, E. Madeira, and E. Bacarin. WOODSS and the Web: annotating and reusing scientific workflows. SIGMOD Record, 34(3):18--23, Sept. 2005.
[16]
J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari, and M. Blay-Fornarino. A data-driven workflow language for grids based on array programming principles. In Workshop on Workflows in Support of Large-Scale Science(WORKS'09), pages 1--10, Portland, USA, Nov. 2009. ACM.
[17]
A. Reilhac, C. Lartizien, N. Costes, S. Sans, C. Comtat, R. N. Gunn, and A. C. Evans. PET-SORTEO: a Monte Carlo-based Simulator with high count rate capabilities. IEEE Transactions on Nuclear Science (TNS), 51(1):46--52, Feb. 2004.
[18]
J. Tabary, S. Marache, S. Valette, W. Segars, and C. Lartizien. Realistic X-Ray CT Simulation of the XCAT Phantom with SINDBAD. In IEEE NSS and MIC Conference, Orlando, USA, Oct. 2009.
[19]
W. M. Van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow patterns. Distributed and Parallel Databases, 14(3):5--51, July 2003.
[20]
J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid computing. ACM SIGMOD records (SIGMOD), 34(3):44--49, Sept. 2005.

Cited By

View all
  • (2023)Workflows for Bioinformatics Data IntegrationBiological Data Integration10.1002/9781394257317.ch3(53-85)Online publication date: 8-Dec-2023
  • (2020)Findable and reusable workflow data productsSemantic Web10.3233/SW-20037411:5(751-763)Online publication date: 1-Jan-2020
  • (2018)Computer-Assisted Scientific Workflow DesignJournal of Grid Computing10.1007/s10723-013-9264-511:3(585-612)Online publication date: 15-Dec-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WORKS '11: Proceedings of the 6th workshop on Workflows in support of large-scale science
November 2011
154 pages
ISBN:9781450311007
DOI:10.1145/2110497
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 November 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. reusable components
  2. scientific workflows

Qualifiers

  • Research-article

Conference

SC '11
Sponsor:

Acceptance Rates

Overall Acceptance Rate 30 of 54 submissions, 56%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)1
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Workflows for Bioinformatics Data IntegrationBiological Data Integration10.1002/9781394257317.ch3(53-85)Online publication date: 8-Dec-2023
  • (2020)Findable and reusable workflow data productsSemantic Web10.3233/SW-20037411:5(751-763)Online publication date: 1-Jan-2020
  • (2018)Computer-Assisted Scientific Workflow DesignJournal of Grid Computing10.1007/s10723-013-9264-511:3(585-612)Online publication date: 15-Dec-2018
  • (2014)Domain-specific summarization of Life-Science e-experiments from provenance tracesWeb Semantics: Science, Services and Agents on the World Wide Web10.1016/j.websem.2014.07.00129:C(19-30)Online publication date: 1-Dec-2014
  • (2013)A Virtual Imaging Platform for Multi-Modality Medical Image SimulationIEEE Transactions on Medical Imaging10.1109/TMI.2012.222015432:1(110-118)Online publication date: Jan-2013
  • (2012)Multi-modality image simulation with the Virtual Imaging Platform: Illustration on cardiac echography and MRI2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)10.1109/ISBI.2012.6235493(98-101)Online publication date: May-2012
  • (undefined)Domain-Specific Summarisation of Life-Science E-Experiments from Provenance TracesSSRN Electronic Journal10.2139/ssrn.3199114

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media