Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2187980.2188224acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
tutorial

Combining usage and content in an online music recommendation system for music in the long-tail

Published: 16 April 2012 Publication History

Abstract

In this paper we propose a hybrid music recommender system, which combines usage and content data. We describe an online evaluation experiment performed in real time on a commercial music web site, specialised in content from the very long tail of music content. We compare it against two stand-alone recommenders, the first system based on usage and the second one based on content data. The results show that the proposed hybrid recommender shows advantages with respect to usage- and content-based systems, namely, higher user absolute acceptance rate, higher user activity rate and higher user loyalty.

References

[1]
R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12:331--370, 2002.
[2]
O. Celma. Music Recommendation and Discovery in the Long Tail. PhD thesis, Universitat Pompeu Fabra, Barcelona, Spain, 2008.
[3]
S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41:391--407, 1990.
[4]
R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: survey and practical guide. Data Mining and Knowledge Discovery, 18(1):140--181, 2009.
[5]
P. Lamere. Social tagging and music information retrieval. Journal of New Music Research, 37(2):101 -- 114, 2008.
[6]
P. Ruppert, R. Hart, and S. Evans. The 2007 digital music survey, Entertainment Media Research, 2007. http://www.slideshare.net/patsch/emr-digital-music-survey-2007.
[7]
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Tenth International Conference on World Wide Web, pages 285--295, Hong Kong, 2001.
[8]
G. Tzanetakis and P. Cook. Musical genre classification of audio signals. IEEE Transactions on Speech and Audio Processing, 10(5):293 -- 302, 2002.

Cited By

View all
  • (2022)Cross-Domain Explicit–Implicit-Mixed Collaborative Filtering Neural NetworkIEEE Transactions on Systems, Man, and Cybernetics: Systems10.1109/TSMC.2021.312926152:11(6983-6997)Online publication date: Nov-2022
  • (2021)A fairness-aware multi-stakeholder recommender systemWorld Wide Web10.1007/s11280-021-00946-824:6(1995-2018)Online publication date: 22-Sep-2021
  • (2019)Towards a unified multi-source-based optimization framework for multi-label learningApplied Soft Computing10.1016/j.asoc.2018.12.01676(425-435)Online publication date: Mar-2019
  • Show More Cited By

Index Terms

  1. Combining usage and content in an online music recommendation system for music in the long-tail

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '12 Companion: Proceedings of the 21st International Conference on World Wide Web
    April 2012
    1250 pages
    ISBN:9781450312301
    DOI:10.1145/2187980
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    • Univ. de Lyon: Universite de Lyon

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 April 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. audio features
    2. hybrid recommender system
    3. music recommendation
    4. tags
    5. usage data

    Qualifiers

    • Tutorial

    Conference

    WWW 2012
    Sponsor:
    • Univ. de Lyon
    WWW 2012: 21st World Wide Web Conference 2012
    April 16 - 20, 2012
    Lyon, France

    Acceptance Rates

    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2022)Cross-Domain Explicit–Implicit-Mixed Collaborative Filtering Neural NetworkIEEE Transactions on Systems, Man, and Cybernetics: Systems10.1109/TSMC.2021.312926152:11(6983-6997)Online publication date: Nov-2022
    • (2021)A fairness-aware multi-stakeholder recommender systemWorld Wide Web10.1007/s11280-021-00946-824:6(1995-2018)Online publication date: 22-Sep-2021
    • (2019)Towards a unified multi-source-based optimization framework for multi-label learningApplied Soft Computing10.1016/j.asoc.2018.12.01676(425-435)Online publication date: Mar-2019
    • (2018)Collaborative Filtering Method for Handling Diverse and Repetitive User-Item InteractionsProceedings of the 29th on Hypertext and Social Media10.1145/3209542.3209550(43-51)Online publication date: 3-Jul-2018
    • (2017)A User Re-Modeling Approach to Item Recommendation using Complex Usage DataProceedings of the ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3121050.3121061(201-208)Online publication date: 1-Oct-2017
    • (2017)Empfehlungssysteme, automatische Erzeugung von Wiedergabelisten und MusikdatenbankenHandbuch Funktionale Musik10.1007/978-3-658-14362-6_5-1(1-37)Online publication date: 4-Jan-2017
    • (2017)Empfehlungssysteme, automatische Erzeugung von Wiedergabelisten und MusikdatenbankenHandbuch Funktionale Musik10.1007/978-3-658-10219-7_5(121-157)Online publication date: 3-Aug-2017
    • (2014)Improving Content-based and Hybrid Music Recommendation using Deep LearningProceedings of the 22nd ACM international conference on Multimedia10.1145/2647868.2654940(627-636)Online publication date: 3-Nov-2014
    • (2013)A Bag of Systems Representation for Music Auto-TaggingIEEE Transactions on Audio, Speech, and Language Processing10.1109/TASL.2013.227931821:12(2554-2569)Online publication date: 1-Dec-2013

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media