Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2348283.2348523acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
poster

Utilizing inter-document similarities in federated search

Published: 12 August 2012 Publication History

Abstract

We demonstrate the merits of using inter-document similarities for federated search. Specifically, we study a results merging method that utilizes information induced from clusters of similar documents created across the lists retrieved from the collections. The method significantly outperforms state-of-the-art results merging approaches.

References

[1]
J. Callan. Distributed information retrieval. In W. Croft, editor, Advances in information retrieval, chapter 5, pages 127--150. Kluwer Academic Publishers, 2000.
[2]
J. Callan and M. Connell. Query-based sampling of text databases. ACM Transactions on Information Systems, 19(2):97--130, 2001.
[3]
F. Crestani and S. Wu. Testing the cluster hypothesis in distributed information retrieval. Information Processing and Management, 42(5):1137--1150, 2006.
[4]
A. Khudyak Kozorovitsky and O. Kurland. Cluster-based fusion of retrieved lists. In Proceedings of SIGIR, pages 893--902, 2011.
[5]
M. Shokouhi, L. Azzopardi, and P. Thomas. Effective query expansion for federated search. In Proceedings of SIGIR, pages 427--434, 2009.
[6]
X. M. Shou and M. Sanderson. Experiments on data fusion using headline information. In Proceedings of SIGIR, pages 413--414, 2002.
[7]
L. Si and J. Callan. A semisupervised learning method to merge search engine results. ACM Transactions on Information Systems, 21(4):457--491, October 2003.
[8]
J. Xu and W. B. Croft. Cluster-based language models for distributed retrieval. In Proceedings of SIGIR, 1999.

Cited By

View all
  • (2015)Burst-aware data fusion for microblog searchInformation Processing & Management10.1016/j.ipm.2014.10.00851:2(89-113)Online publication date: Mar-2015
  • (2014)The Cluster Hypothesis in Information RetrievalProceedings of the 36th European Conference on IR Research on Advances in Information Retrieval - Volume 841610.1007/978-3-319-06028-6_105(823-826)Online publication date: 13-Apr-2014

Index Terms

  1. Utilizing inter-document similarities in federated search

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGIR '12: Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval
    August 2012
    1236 pages
    ISBN:9781450314725
    DOI:10.1145/2348283

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 August 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. federated search
    2. inter-document similarities

    Qualifiers

    • Poster

    Conference

    SIGIR '12
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 792 of 3,983 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2015)Burst-aware data fusion for microblog searchInformation Processing & Management10.1016/j.ipm.2014.10.00851:2(89-113)Online publication date: Mar-2015
    • (2014)The Cluster Hypothesis in Information RetrievalProceedings of the 36th European Conference on IR Research on Advances in Information Retrieval - Volume 841610.1007/978-3-319-06028-6_105(823-826)Online publication date: 13-Apr-2014

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media