Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2452376.2452428acmotherconferencesArticle/Chapter ViewAbstractPublication PagesedbtConference Proceedingsconference-collections
research-article

PMAX: tenant placement in multitenant databases for profit maximization

Published: 18 March 2013 Publication History

Abstract

There has been a great interest in exploiting the cloud as a platform for database as a service. As with other cloud-based services, database services may enjoy cost efficiency through consolidation: hosting multiple databases within a single physical server. Aggressive consolidation, however, may hurt the service quality, leading to SLA violation penalty, which in turn reduces the total business profit, called SLA profit. In this paper, we consider the problem of tenant placement in the cloud for SLA profit maximization, which, as will be shown in the paper, is strongly NP-hard. We propose SLA profit-aware solutions for database tenant placement based on our model for expected penalty computation for multitenant servers. Specifically, we present two approximation algorithms, which have constant approximation ratios, and we further discuss improving the quality of tenant placement using a dynamic programming algorithm. Extensive experiments based on TPC-W workload verified the performance of the proposed approaches.

References

[1]
Inside SQL Azure. http://social.technet.microsoft.com/wiki/contents/articles/1695.inside-sql-azure.aspx.
[2]
J. Allspaw. The Art of Capacity Planning: Scaling Web Resources. O'Reilly Media, 2008.
[3]
S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger. Multi-Tenant Databases for Software as a Service: Schema-Mapping Techniques. In SIGMOD Conference, pages 1195--1206, 2008.
[4]
S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold. A Comparison of Flexible Schemas for Software as a Service. In SIGMOD Conference, pages 881--888, 2009.
[5]
S. K. Barker, Y. Chi, H. J. Moon, H. Hacıgümüş, and P. J. Shenoy. "Cut Me Some Slack": Latency-Aware Live Migration for Databases. In EDBT, pages 432--443, 2012.
[6]
N. Bobroff, A. Kochut, and K. A. Beaty. Dynamic Placement of Virtual Servers for Managing SLA Violations. In Integrated Network Management, pages 119--128, 2007.
[7]
B. Cahoon, K. S. McKinley, and Z. Lu. Evaluating the Performance of Distributed Architectures for Information Retrieval Using a Variety of Workloads. ACM Trans. Inf. Syst., 18(1):1--43, 2000.
[8]
Y. Chi, H. J. Moon, and H. Hacıgümüş. iCBS: Incremental Cost-based Scheduling under Piecewise Linear SLAs. PVLDB, 4(9):563--574, 2011.
[9]
Y. Chi, H. J. Moon, H. Hacıgümüş, and J. Tatemura. SLA-Tree: A Framework for Efficiently Supporting SLA-based Decisions in Cloud Computing. In EDBT, pages 129--140, 2011.
[10]
C. Curino, E. P. C. Jones, S. Madden, and H. Balakrishnan. Workload-Aware Database Monitoring and Consolidation. In SIGMOD Conference, pages 313--324, 2011.
[11]
S. Das, S. Nishimura, D. Agrawal, and A. E. Abbadi. Albatross: Lightweight Elasticity in Shared Storage Databases for the Cloud using Live Data Migration. PVLDB, 4(8):494--505, 2011.
[12]
A. J. Elmore, S. Das, D. Agrawal, and A. E. Abbadi. Zephyr: Live Migration in Shared Nothing Databases for Elastic Cloud Platforms. In SIGMOD Conference, pages 301--312, 2011.
[13]
C. Fehling, F. Leymann, and R. Mietzner. A Framework for Optimized Distribution of Tenants in Cloud Applications. In IEEE CLOUD, pages 252--259, 2010.
[14]
D. Gmach, S. Krompass, A. Scholz, M. Wimmer, and A. Kemper. Adaptive Quality of Service Management for Enterprise Services. TWEB, 2(1), 2008.
[15]
D. Gmach, J. Rolia, and L. Cherkasova. Satisfying Service Level Objectices in a Self-Managing Resource Pool. In SASO, pages 243--253, 2009.
[16]
Z. Gong and X. Gu. PAC: Pattern-driven Application Consolidation for Efficient Cloud Computing. In MASCOTS, pages 24--33, 2010.
[17]
J. R. Haritsa, M. Livny, and M. J. Carey. Earliest Deadline Scheduling for Real-Time Database Systems. In IEEE Real-Time Systems Symposium, pages 232--243, 1991.
[18]
J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton. Architecture of a database system. Foundations and Trends in Databases, 1(2):141--259, 2007.
[19]
M. Hui, D. Jiang, G. Li, and Y. Zhou. Supporting Database Applications as a Service. In ICDE, pages 832--843, 2009.
[20]
D. Jacobs and S. Aulbach. Ruminations on Multi-Tenant Databases. In BTW, pages 514--521, 2007.
[21]
T. Kwok and A. Mohindra. Resource Calculations with Constraints, and Placement of Tenants and Instances for Multi-tenant SaaS Applications. In ICSOC, pages 633--648, 2008.
[22]
W. Lang, S. Shankar, J. M. Patel, and A. Kalhan. Towards Multi-Tenant Performance SLOs. In ICDE, pages 702--713, 2012.
[23]
Z. Liu, M. S. Squillante, and J. L. Wolf. On Maximizing Service-Level-Agreement Profits. In ACM Conference on Electronic Commerce, pages 213--223, 2001.
[24]
Z. Lu and K. S. McKinley. Partial Collection Replication for Information Retrieval. Inf. Retr., 6(2):159--198, 2003.
[25]
Q. Mei, H. Fang, and C. Zhai. A Study of Poisson Query Generation Model for Information Retrieval. In SIGIR, pages 319--326, 2007.
[26]
K. Ramamritham, S. H. Son, and L. C. DiPippo. Real-Time Databases and Data Services. Real-Time Systems, 28(2-3):179--215, 2004.
[27]
J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H. Plattner, and A. Zeier. Predicting In-Memory Database Performance for Automating Cluster Management Tasks. In ICDE, pages 1264--1275, 2011.
[28]
P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu, and H. Hacıgümüş. Intelligent management of virtualized resources for database systems in cloud environment. In ICDE, pages 87--98, 2011.
[29]
P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacıgümüş. ActiveSLA: A Profit-Oriented Admission Control Framework for Database-as-a-Service Providers. In SOCC, pages 15:1--15:14, 2011.
[30]
F. Yang, J. Shanmugasundaram, and R. Yerneni. A Scalable Data Platform for a Large Number of Small Applications. In CIDR, 2009.
[31]
L. Zhang and D. Ardagna. SLA Based Profit Optimization in Autonomic Computing Systems. In ICSOC, pages 173--182, 2004.
[32]
Y. Zhang, Z. H. Wang, B. Gao, C. Guo, W. Sun, and X. Li. An Effective Heuristic for On-line Tenant Placement Problem in SaaS. In ICWS, pages 425--432, 2010.

Cited By

View all
  • (2024)Riveter: Adaptive Query Suspension and Resumption Framework for Cloud Native Databases2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00304(3975-3988)Online publication date: 13-May-2024
  • (2023)YISHAN: Managing Large-scale Cloud Database Instances via Machine LearningIEEE Transactions on Services Computing10.1109/TSC.2021.313124916:1(724-738)Online publication date: 1-Jan-2023
  • (2023)LBFF: Load-Balancing First Fit Algorithm for Tenant Placement ProblemICC 2023 - IEEE International Conference on Communications10.1109/ICC45041.2023.10279638(6261-6267)Online publication date: 28-May-2023
  • Show More Cited By

Index Terms

  1. PMAX: tenant placement in multitenant databases for profit maximization

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    EDBT '13: Proceedings of the 16th International Conference on Extending Database Technology
    March 2013
    793 pages
    ISBN:9781450315975
    DOI:10.1145/2452376
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 March 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. SLA
    2. cloud
    3. database
    4. multitenancy
    5. profit optimization

    Qualifiers

    • Research-article

    Conference

    EDBT/ICDT '13

    Acceptance Rates

    Overall Acceptance Rate 7 of 10 submissions, 70%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)7
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Riveter: Adaptive Query Suspension and Resumption Framework for Cloud Native Databases2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00304(3975-3988)Online publication date: 13-May-2024
    • (2023)YISHAN: Managing Large-scale Cloud Database Instances via Machine LearningIEEE Transactions on Services Computing10.1109/TSC.2021.313124916:1(724-738)Online publication date: 1-Jan-2023
    • (2023)LBFF: Load-Balancing First Fit Algorithm for Tenant Placement ProblemICC 2023 - IEEE International Conference on Communications10.1109/ICC45041.2023.10279638(6261-6267)Online publication date: 28-May-2023
    • (2021) A predictive replication for multi‐tenant databases using deep learning Concurrency and Computation: Practice and Experience10.1002/cpe.622633:13Online publication date: 12-Feb-2021
    • (2020)Processing Big Data Across InfrastructuresBig Data – BigData 202010.1007/978-3-030-59612-5_4(38-51)Online publication date: 18-Sep-2020
    • (2018)A Learning Technique for VM Allocation to Resolve Geospatial QueriesRecent Findings in Intelligent Computing Techniques10.1007/978-981-10-8639-7_61(577-584)Online publication date: 4-Nov-2018
    • (2018)Evaluating Multi-tenant Live Migrations Effects on PerformanceOn the Move to Meaningful Internet Systems. OTM 2018 Conferences10.1007/978-3-030-02610-3_4(61-77)Online publication date: 18-Oct-2018
    • (2017)Energy-efficient resource allocation and provisioning for in-memory database clusters2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM)10.23919/INM.2017.7987260(19-27)Online publication date: May-2017
    • (2017)PerfEnforce OverviewProceedings of the 2017 ACM International Conference on Management of Data10.1145/3055167.3055175(31-33)Online publication date: 14-May-2017
    • (2017)Resource and performance prediction at high utilization for N-Tier cloud-based service systemsProceedings of the Australasian Computer Science Week Multiconference10.1145/3014812.3014857(1-9)Online publication date: 30-Jan-2017
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media