Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Memristive devices in computing system: Promises and challenges

Published: 29 May 2013 Publication History
  • Get Citation Alerts
  • Abstract

    Memristive devices with a simple structure are not only very small but also very versatile, which makes them an ideal candidate used for the next generation computing system in the post-Si era. The working mechanism of the devices and a family of nanodevices built based on this working mechanism are introduced first followed by some proposed applications of these novel devices. The promises and challenges of these devices are then discussed, together with the significant progresses made recently in dealing with these challenges.

    References

    [1]
    Akinaga, H. and Shima, H. 2010. Resistive random access memory (ReRAM) based on metal oxides. Proc. IEEE 98, 2237--2251.
    [2]
    Baikalov, A., Wang, Y. Q., Shen, B., Lorenz, B., Tsui, S., Sun, Y. Y., Xue, Y. Y., and Chu, C. W. 2003. Field-driven hysteretic and reversible resistive switch at the AGPR0.7CA0.3MNO3 Interface. Appl. Phys. Lett. 83, 957--959.
    [3]
    Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., and Williams, R. S. 2010. ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873--876.
    [4]
    Chen, X., Wu, N., Strozier, J., and Ignatiev, A. 2006. Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507.
    [5]
    Chien, W. C. Chen, Y. C., et al. 2010. Unipolar switching behaviors of RTO WOX RRAM. IEEE Electron Device Lett. 31, 126--128.
    [6]
    Choi, B. J. 2005. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715.
    [7]
    Chopra, K. L. 1965. Avalanche-induced negative resistance in thin oxide films. J. Appl. Phys. 36, 184--187.
    [8]
    Chua, L. O. 1971. Memristor: Missing circuit element. IEEE Trans. Circuit Theory CT-18, 507--519.
    [9]
    Chua, L. O. and Kang, S. M. 1976. Memristive devices and systems. Proc. IEEE 64, 209--223.
    [10]
    Chua, L. O. 2011. Resistance switching memories are memristors. Appl. Phys. A 102, 765--783.
    [11]
    Dearnaley, G., Stoneham, A. M., and Morgan, D. V. 1970. Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129--1191.
    [12]
    Fors, R., Khartsev, S. I., and Grishin, A. M. 2005. Giant resistance switching in metal-insulator-manganite junctions: Evidence for MOTT tRANSITION. Phys. Rev. B 71.
    [13]
    Kawasaki, T., Fujii, M., Sawa, A., and Akoh, H. 2005. Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107.
    [14]
    Gregory, S. S. and Williams, R. S. 2007. NANO/CMOS architectures using a field-programmable nanowire interconnect. Nanotechnol. 18, 035204.
    [15]
    Hasegawa, T., Ohno, T., Terabe, K., Tsuruoka, T., Nakayama, T., Gimzewski, J. K., and Aono, M. 2010. Learning abilities achieved by a single solid-state atomic switch. Adv. Mater. 22, 1831--1834.
    [16]
    Hasegawa, T., Terabe, K., Tsuruoka, T., and Aono, M. 2012. Atomic switch: atom/ion movement controlled devices for beyond Von Neumann computers. Adv. Mater. 24, 252--267.
    [17]
    Hickmott, T. W. 1962. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669--2682.
    [18]
    Hutchby, J. and Garner, M. 2010. Assessment of the potential and maturity of selected emerging research memory technologies. Workshop and ERD/ERM Working Group Meeting. http://www.itrs.net/links/2010itrs/2010update/topost/erd_erm_2010finalreportmemoryassessment_itrs.pdf.
    [19]
    Inoue, I. H. and Rozenberg, M. J. 2008. Taming the Mott transition for a novel Mott transistor. Adv. Funct. Mater. 18, 2289--2292.
    [20]
    Jameson, J. R. 2007. Field-programmable rectification in rutile TiO2 Crystals. Appl. Phys. Lett. 91, 112101.
    [21]
    Jeon, S. H., Park, B. H., Lee, J., Lee, B., and Han, S. 2006. First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89, 42904.
    [22]
    Jo, S. H.,Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu. W. 2010. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297--1301.
    [23]
    Kim, K. M., Choi, B. J., Shin, Y. C., Choi, S., and Hwang, C. S. 2007. Anode-interface localized filamentary mechanism in resistive switching of tio2 thin films. Appl. Phys. Lett. 91, 012907.
    [24]
    Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.-M., Hussain, T., Srinivasa, N., and Lu, W. 2012. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett. 12, 389--395.
    [25]
    Knauth, P. and Tuller, H. L. 1999. Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897--902.
    [26]
    Kwon, D. H., Kim, K. M., et al. 2010. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148--153.
    [27]
    Lee, D. 2007. Resistance switching of copper doped moox films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104.
    [28]
    Lee, H. Y., Chen, Y. S. et al. 2010. Evidence and solution of over-RESET problem for HfOX based resistive memory with sub-ns switching speed and high endurance. In Proceedings of the International Electron Devices Meeting. IEEE, 460.
    [29]
    Likharev, K. K. 2011. Crossnets: Neuromorphic hybrid CMOS/Nanoelectronic networks. Sci. Adv. Mater. 3, 322--331.
    [30]
    Liu, S. Q., Wu, N. J., and Ignatiev, A. 2000. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749--2751.
    [31]
    Miao, F., Strachan, J. P., et al. 2011. Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23, 5633--5640.
    [32]
    Miao, F., Yi, W., et al. 2012. Continuous electrical tuning of the chemical composition of TaOx-based memristors. ACS Nano 6, 2312--2318.
    [33]
    Nian, Y. B., Strozier, J., Wu, N. J., Chen, X., and Ignatiev, A. 2007. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403.
    [34]
    Norton, D. P. 2004. Synthesis and properties of epitaxial electronic oxide thin-film materials. Mat. Sci. Eng., R: 43, 139--247.
    [35]
    Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J. K., and Aono, M. 2011. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater. 10, 591--595.
    [36]
    Parkin, S. S. P., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M., and Yang, S. H. 2004. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862--867.
    [37]
    Pickett, M. D., Strukov, D. B., Borghetti, J. L., Yang, J. J., Snider, G. S., Stewart, D. R., and Williams, R. S. 2009. Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106, 074508.
    [38]
    Rohde, C. 2005. Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86, 262907.
    [39]
    Rozenberg, M. J., Inoue, I. H., and Sanchez, M. J. 2004. Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92, 178302.
    [40]
    Sawa, A., Fujii, T., Kawasaki, M., and Tokura, Y. 2004. Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti//Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073--4075.
    [41]
    Shannon, C. E. 1938. Symbolic analysis of relay and switching circuits. Trans. AIEE 57, 713--723.
    [42]
    Simmons, J. G. and Verderber, R. R. 1967. New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. London, Ser. A 301, 77--102.
    [43]
    Snider, G. S. 2008. Spike-timing-dependent learning in memristive nanodevices. In Proceedings of the IEEE International Symposium on Nanoscale Architectures. IEEE, 85--92.
    [44]
    Strachan, J. P., Pickett, M. D., Yang, J. J., Aloni, S., David Kilcoyne, A. L., Medeiros-Ribeiro, G., and Williams, R. S. 2010. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22, 3573--3577.
    [45]
    Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. 2008. The missing memristor found. Nature 453, 80--83.
    [46]
    Strukov, D. B. and Williams, R. S. 2009a. Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proc. Nat. Acad. Sci. 106, 20155--20158.
    [47]
    Strukov, D. B. and Williams, R. S. 2009b. Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94, 515--519.
    [48]
    Szot, K., Speier, W., Bihlmayer, G., and Waser, R. 2006. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312--320.
    [49]
    Torrezan, A. C., Strachan, J. P., Medeiros-Ribeiro, G., and Williams, R. S. 2011. Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnol. 22, 485203.
    [50]
    Tsui, S., Wang, Y. Q., Xue, Y. Y., and Chu, C. W. 2006. Mechanism and scalability in resistive switching of metal-Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 89.
    [51]
    Tsunoda, K. 2007. Bipolar resistive switching in polycrystalline TiO2 films. Appl. Phys. Lett. 90, 113501.
    [52]
    Vogel, E. M. 2007. Technology and metrology of new electronic materials and devices. Nat. Nanotechnol. 2, 25--32.
    [53]
    Waser, R., Dittmann, R., Staikov, G., and Szot, K. 2009. Redox-based resistive switching memories: Nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632--2663.
    [54]
    Watanabe, Y., Bednorz, J. G., Bietsch, A., Gerber C., Widmer, D., Beck, A., and Wind, S. J. 2001. Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738--3740.
    [55]
    Whitehead, A. N. and Russell, B. 1910. Principia Mathematica. Cambridge University Press.
    [56]
    Wong, H. S. P., Heng-Yuan, L., et al. 2012. Metal-oxide RRAM. Proc. IEEE 100, 1951--1970.
    [57]
    Xia, Q. F., Robinett, W., et al. 2009. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640--3645.
    [58]
    Yang, J. J., Strachan, J. P., et al. 2010. Diffusion of adhesion layer metals controls nanoscale memristive switching. Adv. Mater. 22, 4034--4038.
    [59]
    Yang, J. J., Miao, F., Pickett, M. D., Ohlberg, D. A. A., Stewart, D. R., Lau, C. N., and Williams, R. S. 2009. The mechanism of electroforming of metal oxide memristive switches. Nanotechnol. 20, 215201.
    [60]
    Yang, J. J., Pickett, M. D., Li, X., Ohlberg, D. A. A., Stewart, D. R., and Williams, R. S. 2008. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotchnol. 3, 429--433.
    [61]
    Yang, J. J., Inoue, I. H., Mikolajick, T., and Hwang, C. S. 2012a. Metal oxide memories based on thermochemical and valence change mechanisms. MRS Bull. 37, 131--137.
    [62]
    Yang, J. J., Kobayashi, N. P., Strachan, J. P., Zhang, M. X., Ohlberg, D. A. A., Pickett, M. D., Li, Z., Medeiros-Ribeiro, G., and Williams, R. S. 2011a. Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23, 123--125.
    [63]
    Yang, J. J., Strachan, J. P., Miao, F., Zhang, M.-X., Pickett, M., Yi, W., Ohlberg, D., Medeiros-Ribeiro, G., and Williams, R. S. 2011b. Metal/TiO2 Interfaces for memristive switches. Appl. Phys. A 102, 785--789.
    [64]
    Yang, J. J., Zhang, M. X., et al. 2012b. Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett. 100, 113501.
    [65]
    Yoshida, C., Tsunoda, K., Noshiro, H., and Sugiyama, Y. 2007. High speed resistive switching in Pt/TiO2/tin film for nonvolatile memory application. Appl. Phys. Lett. 91, 223510.
    [66]
    Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., and Ando, K. 2004. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat Mater 3, 868--871.
    [67]
    Zhirnov, V. V., Cavin, R. K., Menzel, S., Linn, E., Schmelzer, S., Brauhaus, D., Schindler, C., and Waser, R. 2010. Memory devices: Energy-space-time trade-offs. Proc. IEEE 98, 2185--2200.
    [68]
    Zhirnov, V. V., Meade, R., Cavin, R. K., and Sandhu, G. 2011. Scaling limits of resistive memories. Nanotechnol. 22, 254027.
    [69]
    Zhirnov, V. V. and Cavin, R. K. 2008. Nanodevices: Charge of the heavy brigade. Nat. Nanotech. 3, 377--378.

    Cited By

    View all
    • (2024)New Class of Discrete-Time Memristor Circuits: First Integrals, Coexisting Attractors and Bifurcations Without ParametersInternational Journal of Bifurcation and Chaos10.1142/S021812742450001934:01Online publication date: 6-Feb-2024
    • (2023)Graphene-based RRAM devices for neural computingFrontiers in Neuroscience10.3389/fnins.2023.125307517Online publication date: 5-Oct-2023
    • (2023)Experimental Verification of Uncoupled Memristive Cellular Nonlinear Network by Processing the EDGE Detection TaskProceedings of the 18th ACM International Symposium on Nanoscale Architectures10.1145/3611315.3633274(1-7)Online publication date: 18-Dec-2023
    • Show More Cited By

    Index Terms

    1. Memristive devices in computing system: Promises and challenges

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 9, Issue 2
      Special issue on memory technologies
      May 2013
      133 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/2463585
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Journal Family

      Publication History

      Published: 29 May 2013
      Accepted: 01 November 2012
      Revised: 01 September 2012
      Received: 01 June 2012
      Published in JETC Volume 9, Issue 2

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Memory
      2. memristive
      3. memristor
      4. nanodevice
      5. oxide
      6. resistance
      7. resistive
      8. switches
      9. switching

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)27
      • Downloads (Last 6 weeks)3
      Reflects downloads up to 09 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)New Class of Discrete-Time Memristor Circuits: First Integrals, Coexisting Attractors and Bifurcations Without ParametersInternational Journal of Bifurcation and Chaos10.1142/S021812742450001934:01Online publication date: 6-Feb-2024
      • (2023)Graphene-based RRAM devices for neural computingFrontiers in Neuroscience10.3389/fnins.2023.125307517Online publication date: 5-Oct-2023
      • (2023)Experimental Verification of Uncoupled Memristive Cellular Nonlinear Network by Processing the EDGE Detection TaskProceedings of the 18th ACM International Symposium on Nanoscale Architectures10.1145/3611315.3633274(1-7)Online publication date: 18-Dec-2023
      • (2023)PMLDS: An LSM-Tree Direct Managed Storage for Key-Value Stores on Byte-Addressable DevicesProceedings of the 52nd International Conference on Parallel Processing10.1145/3605573.3605629(223-232)Online publication date: 7-Aug-2023
      • (2023)On the Performance Intricacies of Persistent Memory Aware Storage EnginesIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.324864335:10(10365-10382)Online publication date: 1-Oct-2023
      • (2023)Dalea: A Persistent Multi-Level Extendible Hashing with Improved Tail PerformanceJournal of Computer Science and Technology10.1007/s11390-023-2957-838:5(1051-1073)Online publication date: 1-Sep-2023
      • (2022)Convergence of Neural Networks with a Class of Real Memristors with Rectifying CharacteristicsMathematics10.3390/math1021402410:21(4024)Online publication date: 29-Oct-2022
      • (2022)Convergence of a Class of Delayed Neural Networks with Real Memristor DevicesMathematics10.3390/math1014243910:14(2439)Online publication date: 13-Jul-2022
      • (2022)DINOMOProceedings of the VLDB Endowment10.14778/3565838.356585415:13(4023-4037)Online publication date: 1-Sep-2022
      • (2022)Halo: A Hybrid PMem-DRAM Persistent Hash Index with Fast RecoveryProceedings of the 2022 International Conference on Management of Data10.1145/3514221.3517884(1049-1063)Online publication date: 10-Jun-2022
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media