Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Spin-transfer torque magnetic random access memory (STT-MRAM)

Published: 29 May 2013 Publication History

Abstract

Spin-transfer torque magnetic random access memory (STT-MRAM) is a novel, magnetic memory technology that leverages the base platform established by an existing 100+nm node memory product called MRAM to enable a scalable nonvolatile memory solution for advanced process nodes. STT-MRAM features fast read and write times, small cell sizes of 6F2 and potentially even smaller, and compatibility with existing DRAM and SRAM architecture with relatively small associated cost added. STT-MRAM is essentially a magnetic multilayer resistive element cell that is fabricated as an additional metal layer on top of conventional CMOS access transistors. In this review we give an overview of the existing STT-MRAM technologies currently in research and development across the world, as well as some specific discussion of results obtained at Grandis and with our foundry partners. We will show that in-plane STT-MRAM technology, particularly the DMTJ design, is a mature technology that meets all conventional requirements for an STT-MRAM cell to be a nonvolatile solution matching DRAM and/or SRAM drive circuitry. Exciting recent developments in perpendicular STT-MRAM also indicate that this type of STT-MRAM technology may reach maturity faster than expected, allowing even smaller cell size and product introduction at smaller nodes.

References

[1]
Abraham, D., Trouilloud, P., and Worledge, D. 2006. Rapid-turnaround characterization methods for MRAM development. IBM J. Res. Dev. 50, 1, 67.
[2]
Albert, F., Katine, J., Buhrman, R., and Ralph, D. 2000. Spin-polarized current switching of a Co thin film nanomagnet. Appl. Phys. Lett. 77, 23, 3809.
[3]
Apalkov, D., Watts, S., Driskill-Smith, A., Chen, E., Diao, Z., and Nikitin, V. 2010. Comparison of scaling of in-plane and perpendicular spin transfer switching technologies by micromagnetic simulation. IEEE Trans. Magn. 46, 6, 2240--2243.
[4]
Apalkov, D., Watts, S., et al. 2010. Spin transfer switching efficiency in magnetic tunneling junctions with dual barriers. In Proceedings of the Annual Magnetism and Magnetic Materials Conference.
[5]
Berger, L. 1996. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 13, 9353--9358.
[6]
Butler, W. H., Zhang, X.-G., and Schulthess, T. C. 2001. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B, 63, 5, 054416.
[7]
Chen, E., Apalkov, D., et al. 2010. Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46, 6, 1873--1878.
[8]
Chen, Y., Li, H., Wang, X., Zhu, W., Xu, W., and Zhang, T. 2010. Combined magnetic- and circuit-level enhancements for the nondestructive self-reference scheme of STT-MRAM. In Proceedings of the International Symposium on Low Power Electronics and Design. 1--6.
[9]
Chung, S., Rho, K., et al. 2010. Fully integrated 54nm STTRAM with the smallest bit cell dimension for high density memory application. In Proceedings of the IEEE International Electron Devices Meeting. 304--307.
[10]
Daibou, T., Yoshikawa, M. et al. 2010. Spin transfer torque switching in perpendicular magnetic tunnel junctions using L1zero ordered FePd. In Proceedings of the Joint MMM-Intermag Conference.
[11]
Diao, Z., Apalkov, D., Pakala, M., Ding, Y., Panchula, A., and Huai, Y. 2005. Spin transfer switching and spin polarization in magnetic tunnel junctions with MgO and AlO{sub x} barriers. Appl. Phys. Lett. 87, 23, 232502.
[12]
Diao, Z., Panchula, A., et al. 2007. Spin transfer switching in dual MgO magnetic tunnel junctions. Appl. Phys. Lett. 90, 13, 132508.
[13]
Fukami, S., Suzuki, T., et al. 2009. Low-current perpendicular domain wall motion cell for scalable high-speed MRAM. In Proceedings of the Symposium on VLSI Technology.
[14]
Hosomi, M., Yamagishi, H., et al. 2005. A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram. In Proceedings of the IEEE International Electron Devices Meeting. 473.
[15]
Huai, Y., Albert, F., Nguyen, P., Pakala, M., and Valet, T. 2004. Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 16, 8.
[16]
Ikeda, S., Miura, K., et al. 2010. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 8, 1--4.
[17]
Ishigaki, T., Kawahara, T., Takemura, R., Ono, K., Ito, K., Matsuoka, H., and Ohno, H. 2010. A multi-level-cell spin-transfer torque memory with series-stacked magnetotunnel junctions. In Proceedings of the Symposium on VLSI Technology. 234--235.
[18]
Johnson, M., Bloemen, P., Broeder, F. J. A., and Vries, J. J. 1996. Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409.
[19]
Johnson, M. T., Jungblut, R., and Kelly, P. J. 1995. Perpendicular magnetic anisotropy of multilayers - recent insights. Science 148, 118--124.
[20]
Katine, J., Albert, F., Buhrman, R., Myers, E., and Ralph, D. 2000. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 14, 3149--3152.
[21]
Kawahara, T., Miura, K., et al. 2007. 2Mb SPRAM design: Bi-directional current write and parallelizing-direction current read schemes based on spin-transfer torque switching. In Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology. 238--241.
[22]
Kent, A. D., Özyilmaz, B., and Del Barco, E. 2004. Spin-transfer-induced precessional magnetization reversal. Appl. Phys. Lett. 84, 19, 3897.
[23]
Koch, R. H., Katine, J. A., and Sun, J. Z. 2004. Time-resolved reversal of spin-transfer switching in a nanomagnet. Phys. Rev. Lett. 92, 8, 2--5.
[24]
Kugler, Z., Drewello, V., Schäfers, M., Schmalhorst, J., Reiss, G., and Thomas, A. 2011. Temperature and bias voltage dependence of Co/Pd multilayer-based magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 323, 2, 198--201.
[25]
Lee, Y. M., Hayakawa, J., Ikeda, S., Matsukura, F., and Ohno, H. 2007. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90, 21, 212507.
[26]
Lee, Y. M., Yoshida, C., Tsunoda, K., Umehara, S., Aoki, M., and Sugii, T. 2010. Highly scalable STTMRAM with MTJs of top-pinned structure in 1T/1MTJ Cell. In Proceedings of the Symposium on VLSI Technology. 49--50.
[27]
Lin, C. J., Kang, S. H., et al. 2009. 45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ Cell. In Proceedings of the IEEE International Electron Devices Meeting. 279--282.
[28]
Mangin, S., Ravelosona, D., Katine, J. A., Carey, M. J., Terris, B. D., and Fullerton, E. E. 2006. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nat. Mater. 5, 3, 210--215.
[29]
Morise, H., and Nakamura, S. 2006. Relaxing-precessional magnetization switching. J. Magn. Magn. Mater. 306, 2, 260--264.
[30]
Nakayama, M., Kai, T., et al. 2008. Spin transfer switching in TbCoFe/CoFeB/MgO/CoFeB/TbCoFe magnetic tunnel junctions with perpendicular magnetic anisotropy. J. Appl. Phys. 103, 7, 07A710.
[31]
Parkin, S. S. P., Kaiser, C., Panchula, A., Rice, P. M., Hughes, B., Samant, M., and Yang, S.-H. 2004. Giant tunnelling magnetoresistance at room temperature with MgO 100 tunnel barriers. Nat. Mater. 3, 12, 862--7.
[32]
Prejbeanu, I. L., Kerekes, M., Sousa, R. C., Sibuet, H., Redon, O., Dieny, B., and Nozières, J. P. 2007. Thermally assisted MRAM. J. Phys. Condens. Matter 19, 16, 165218.
[33]
Seki, T., Mitani, S., Yakushiji, K., and Takanashi, K. 2006. Magnetization switching in nanopillars with FePt alloys by spin-polarized current. J. Appl. Phys. 99, 8, 08G521.
[34]
Slonczewski, J. 1996. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, 1, L1.
[35]
Sun, J. 2000. Spin-current interaction with a monodomain magnetic body: A model study. Phys. Rev. B 62, 1, 570--578.
[36]
Tehrani, S., Slaughter, J., et al. 2003. Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 91, 5, 703--714.
[37]
Theodonis, I., Kalitsov, A., and Kioussis, N. 2007. Spin transfer torque in double barrier magnetic tunnel junctions. J. Magn. Magn. Mater., 310, 2, 2043--2045.
[38]
Wolf, S., Awschalom, D., Buhrman, R., Daughton, J., Von Molnar, S., Roukes, M., Chtchelkanova, A., and Treger, D. M. 2001. Spintronics: A spin-based electronics vision for the future. Science 294, 5546, 1488.
[39]
Worledge, D. C., Hu, G., et al. 2010. Switching distributions and write reliability of perpendicular spin torque MRAM. In Proceedings of the IEEE International Electron Devices Meeting. 296--299.
[40]
Worledge, D. C., Hu, G., et al. 2011. Spin torque switching of perpendicular Ta|CoFeB|MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 2, 022501.
[41]
Yoda, H., Kishi, et al. 2010. High efficient spin transfer torque writing on perpendicular magnetic tunnel junctions for high density MRAMs. Curr. Appl. Phys. 10, 1, e87--e89.
[42]
Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., and Ando, K. 2004. Giant room-temperature magnetoresistance in single-crystal Fe/MgO MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 12, 868--71.

Cited By

View all
  • (2024)The fabrication of spin transfer torque-based magnetoresistive random access memory cell with ultra-low switching powerJapanese Journal of Applied Physics10.35848/1347-4065/ad38c663:5(05SP10)Online publication date: 14-May-2024
  • (2024) Biquadratic magnetic coupling effect in CoPt/Cr/Fe 90 Co 10 orthogonal structures Japanese Journal of Applied Physics10.35848/1347-4065/ad0e2863:2(02SP32)Online publication date: 4-Jan-2024
  • (2024)Spin-Valve-Controlled Triggering of SuperconductivityNanomaterials10.3390/nano1403024514:3(245)Online publication date: 23-Jan-2024
  • Show More Cited By

Index Terms

  1. Spin-transfer torque magnetic random access memory (STT-MRAM)

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 9, Issue 2
    Special issue on memory technologies
    May 2013
    133 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/2463585
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 29 May 2013
    Accepted: 01 October 2011
    Revised: 01 October 2011
    Received: 01 June 2011
    Published in JETC Volume 9, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. MRAM
    2. magnetic memory
    3. magnetic tunneling junction
    4. spin polarization
    5. spin transfer torque
    6. tunneling magnetoresistance

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)590
    • Downloads (Last 6 weeks)54
    Reflects downloads up to 12 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)The fabrication of spin transfer torque-based magnetoresistive random access memory cell with ultra-low switching powerJapanese Journal of Applied Physics10.35848/1347-4065/ad38c663:5(05SP10)Online publication date: 14-May-2024
    • (2024) Biquadratic magnetic coupling effect in CoPt/Cr/Fe 90 Co 10 orthogonal structures Japanese Journal of Applied Physics10.35848/1347-4065/ad0e2863:2(02SP32)Online publication date: 4-Jan-2024
    • (2024)Spin-Valve-Controlled Triggering of SuperconductivityNanomaterials10.3390/nano1403024514:3(245)Online publication date: 23-Jan-2024
    • (2024)FluidKV: Seamlessly Bridging the Gap between Indexing Performance and Memory-Footprint on Ultra-Fast StorageProceedings of the VLDB Endowment10.14778/3648160.364817717:6(1377-1390)Online publication date: 1-Feb-2024
    • (2024)The Temperature Dependence of Spin Pumping in Py/W and Py/Pt BilayersPhysics of Metals and Metallography10.1134/S0031918X24600593125:5(446-450)Online publication date: 17-Jul-2024
    • (2024)TieredHM: Hotspot-Optimized Hash Indexing for Memory-Semantic SSD-Based Hybrid MemoryIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2024.335469343:6(1755-1768)Online publication date: Jun-2024
    • (2024) Improving the Relationship Between B + -Tree and Memory Allocator for Persistent Memory 2024 IEEE 40th International Conference on Data Engineering (ICDE)10.1109/ICDE60146.2024.00299(3906-3919)Online publication date: 13-May-2024
    • (2024)FETs for Analog Neural MACsIEEE Access10.1109/ACCESS.2024.338709412(54019-54048)Online publication date: 2024
    • (2024)Multi-Retention STT-MRAM Architectures for IoT: Evaluating the Impact of Retention Levels and Memory Mapping SchemesIEEE Access10.1109/ACCESS.2024.336607412(26562-26580)Online publication date: 2024
    • (2024)Domain-Specific STT-MRAM-Based In-Memory Computing: A SurveyIEEE Access10.1109/ACCESS.2024.336563212(28036-28056)Online publication date: 2024
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media