Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2484028.2484052acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Personalized time-aware tweets summarization

Published: 28 July 2013 Publication History

Abstract

We focus on the problem of selecting meaningful tweets given a user's interests; the dynamic nature of user interests, the sheer volume, and the sparseness of individual messages make this an challenging problem. Specifically, we consider the task of time-aware tweets summarization, based on a user's history and collaborative social influences from ``social circles.'' We propose a time-aware user behavior model, the Tweet Propagation Model (TPM), in which we infer dynamic probabilistic distributions over interests and topics. We then explicitly consider novelty, coverage, and diversity to arrive at an iterative optimization algorithm for selecting tweets. Experimental results validate the effectiveness of our personalized time-aware tweets summarization method based on TPM.

References

[1]
D. Blei and J. Lafferty. Dynamic topic models. In ICML 2006, pages 113--120, 2006.
[2]
D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. Journal of machine Learning research, 3:993--1022, 2003.
[3]
S. Carter, W. Weerkamp, and M. Tsagkias. Microblog language identification: overcoming the limitations of short, unedited and idiomatic text. Language Resources and Evaluation, 2012.
[4]
D. Chakrabarti and K. Punera. Event summarization using tweets. In ICWSM 2011, pages 66--73, 2011.
[5]
K. Chen, T. Chen, G. Zheng, O. Jin, E. Yao, and Y. Yu. Collaborative personalized tweet recommendation. In SIGIR 2012, 2012.
[6]
B. Connor, M. Krieger, and D. Ahn. Tweetmotif: Exploratory search and topic summarization for twitter. ICWSM 2010, pages 2--3, 2010.
[7]
G. De Francisci Morales, A. Gionis, and C. Lucchese. From chatter to headlines: harnessing the real-time web for personalized news recommendation. In WSDM 2012, 2012.
[8]
Q. Diao, J. Jiang, F. Zhu, and E. Lim. Finding bursty topics from microblogs. In ACL 2012, 2012.
[9]
Y. Duan, Z. Chen, F. Wei, M. Zhou, and H. Shum. Twitter topic summarization by ranking tweets using social influence and content quality. In COLING 2012, pages 763--779, 2012.
[10]
G. Erkan and D. Radev. Lexrank: Graph-based lexical centrality as salience in text summarization. JAIR, 22: 457--479, 2004.
[11]
T. Griffiths and M. Steyvers. Finding scientific topics. National Academy of Sciences, 101:5228--5235, 2004.
[12]
T. Hofmann. Probabilistic latent semantic indexing. In SIGIR 1999, pages 50--57, 1999.
[13]
T. Iwata, S. Watanabe, T. Yamada, and N. Ueda. Topic tracking model for analyzing consumer purchase behavior. In IJCAI 2009, volume 9, pages 1427--1432, 2009.
[14]
O. Jin, N. Liu, K. Zhao, Y. Yu, and Q. Yang. Transferring topical knowledge from auxiliary long texts for short text clustering. In CIKM 2011, 2011.
[15]
H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media? In WWW 2010, pages 591--600, 2010.
[16]
L. Li, K. Zhou, G. Xue, H. Zha, and Y. Yu. Enhancing diversity, coverage and balance for summarization through structure learning. In WWW 2009, 2009.
[17]
C. Lin. Rouge: A package for automatic evaluation of summaries. In ACL 2004, pages 74--81, 2004.
[18]
H. Ma, I. King, and M. Lyu. Learning to recommend with social trust ensemble. In SIGIR 2009, pages 203--210, 2009.
[19]
H. Ma, D. Zhou, C. Liu, M. Lyu, and I. King. Recommender systems with social regularization. In WSDM 2011, pages 287--296, 2011.
[20]
E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics to microblog posts. In WSDM 2012, pages 563--572, 2012.
[21]
J. Nichols, J. Mahmud, and C. Drews. Summarizing sporting events using twitter. In IUI 2012, pages 189--198, 2012.
[22]
M. Pennacchiotti, F. Silvestri, H. Vahabi, and R. Venturini. Making your interests follow you on twitter. In CIKM 2012, 2012.
[23]
M. Porter. An algorithm for suffix stripping. Program: electronic library and information systems, 1980.
[24]
D. Radev, H. Jing, M. Stys, and D. Tam. Centroid-based summarization of multiple documents. Information Processing & Management, 2004.
[25]
D. Ramage, S. Dumais, and D. Liebling. Characterizing microblogs with topic models. In ICWSM 2010, pages 130--137, 2010.
[26]
M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for authors and documents. In UAI 2004, pages 487--494, 2004.
[27]
B. Sharifi, M. Hutton, and J. Kalita. Summarizing microblogs automatically. In NAACL 2010, 2010.
[28]
H. Takamura, H. Yokono, and M. Okumura. Summarizing a document stream. Advances in Information Retrieval, pages 177--188, 2011.
[29]
H. Wallach. Topic modeling: beyond bag-of-words. In ICML 2006, pages 977--984, 2006.
[30]
X. Wei, J. Sun, and X. Wang. Dynamic mixture models for multiple time series. In IJCAI 2007, pages 2909--2914, 2007.
[31]
J. Weng, E. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential twitterers. In WSDM 2010, pages 261--270, 2010.
[32]
Z. Xu, Y. Zhang, Y. Wu, and Q. Yang. Modeling user posting behavior on social media. In SIGIR 2012, pages 545--554, 2012.
[33]
R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y. Zhang. Evolutionary timeline summarization: a balanced optimization framework via iterative substitution. In SIGIR 2011, pages 745--754, 2011.
[34]
S. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha. Like like alike: joint friendship and interest propagation in social networks. In WWW 2011, pages 537--546, 2011.
[35]
Z. Yang, K. Cai, J. Tang, L. Zhang, Z. Su, and J. Li. Social context summarization. In SIGIR 2011, 2011.
[36]
M. Ye, X. Liu, and W. Lee. Exploring social influence for recommendation: a generative model approach. In SIGIR 2012, 2012.
[37]
X. Zhao, J. Jiang, J. He, Y. Song, P. Achananuparp, E. LIM, and X. Li. Topical keyphrase extraction from twitter. In ACL 2011, 2011.

Cited By

View all
  • (2024)Limits of predictability in top-N recommendationInformation Processing & Management10.1016/j.ipm.2024.10373161:4(103731)Online publication date: Jul-2024
  • (2023)Summarizing Web Archive Corpora via Social Media Storytelling by Automatically Selecting and Visualizing ExemplarsACM Transactions on the Web10.1145/360603018:1(1-48)Online publication date: 11-Oct-2023
  • (2023)TSSuBERT: How to Sum Up Multiple Years of Reading in a Few TweetsACM Transactions on Information Systems10.1145/358178641:4(1-33)Online publication date: 10-Apr-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGIR '13: Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval
July 2013
1188 pages
ISBN:9781450320344
DOI:10.1145/2484028
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 July 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. data enrichment
  2. topic modeling
  3. tweets summarization
  4. twitter

Qualifiers

  • Research-article

Conference

SIGIR '13
Sponsor:

Acceptance Rates

SIGIR '13 Paper Acceptance Rate 73 of 366 submissions, 20%;
Overall Acceptance Rate 792 of 3,983 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)11
  • Downloads (Last 6 weeks)2
Reflects downloads up to 06 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Limits of predictability in top-N recommendationInformation Processing & Management10.1016/j.ipm.2024.10373161:4(103731)Online publication date: Jul-2024
  • (2023)Summarizing Web Archive Corpora via Social Media Storytelling by Automatically Selecting and Visualizing ExemplarsACM Transactions on the Web10.1145/360603018:1(1-48)Online publication date: 11-Oct-2023
  • (2023)TSSuBERT: How to Sum Up Multiple Years of Reading in a Few TweetsACM Transactions on Information Systems10.1145/358178641:4(1-33)Online publication date: 10-Apr-2023
  • (2023)Follow the Timeline! Generating an Abstractive and Extractive Timeline Summary in Chronological OrderACM Transactions on Information Systems10.1145/351722141:1(1-30)Online publication date: 9-Jan-2023
  • (2023)Axiomatic Analysis of Pre‐Processing Methodologies Using Machine Learning in Text MiningConvergence of Cloud with AI for Big Data Analytics10.1002/9781119905233.ch11(229-256)Online publication date: 10-Feb-2023
  • (2020)SuDocuProceedings of the VLDB Endowment10.14778/3415478.341549413:12(2861-2864)Online publication date: 14-Sep-2020
  • (2020)Cognitive mechanisms in sensemakingJournal of the Association for Information Science and Technology10.1002/asi.2422171:2(158-171)Online publication date: 1-Jan-2020
  • (2019)Two Birds With One Stone: A Coupled Poisson Deconvolution for Detecting and Describing Topics From Multimodal Web DataIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2018.287299730:8(2397-2409)Online publication date: Aug-2019
  • (2019)On‐demand recent personal tweets summarization on mobile devicesJournal of the Association for Information Science and Technology10.1002/asi.2413770:6(547-562)Online publication date: 22-Apr-2019
  • (2018)Dictionary Learning based Supervised Discrete Hashing for Cross-Media RetrievalProceedings of the 2018 ACM on International Conference on Multimedia Retrieval10.1145/3206025.3206045(222-230)Online publication date: 5-Jun-2018
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media