Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2487575.2487591acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Fast and scalable polynomial kernels via explicit feature maps

Published: 11 August 2013 Publication History

Abstract

Approximation of non-linear kernels using random feature mapping has been successfully employed in large-scale data analysis applications, accelerating the training of kernel machines. While previous random feature mappings run in O(ndD) time for $n$ training samples in d-dimensional space and D random feature maps, we propose a novel randomized tensor product technique, called Tensor Sketching, for approximating any polynomial kernel in O(n(d+D \log{D})) time. Also, we introduce both absolute and relative error bounds for our approximation to guarantee the reliability of our estimation algorithm. Empirically, Tensor Sketching achieves higher accuracy and often runs orders of magnitude faster than the state-of-the-art approach for large-scale real-world datasets.

References

[1]
C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.
[2]
M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In Proceedings of ICALP'02, pages 693--703, 2002.
[3]
R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Approximate kernel k-means: solution to large scale kernel clustering. In Proceedings of KDD'11, pages 895--903, 2011.
[4]
R. Chitta, R. Jin, and A. K. Jain. Efficient kernel clustering using random fourier features. In Proceedings of ICDM'12, pages 161--170, 2012.
[5]
P. Drineas and M. W. Mahoney. On the Nyström method for approximating a gram matrix for improved kernel-based learning. Journal of Machine Learning Research, 6:2153--2175, 2005.
[6]
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871--1874, 2008.
[7]
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2:243--264, 2001.
[8]
A. Frank and A. Asuncion. UCI machine learning repository, 2010.
[9]
T. Joachims. Training linear SVMs in linear time. In Proceedings of KDD'06, pages 217--226, 2006.
[10]
P. Kar and H. Karnick. Random feature maps for dot product kernels. In Proceedings of AISTATS'12, pages 583--591, 2012.
[11]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86:2278--2324, 1998.
[12]
S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In Proceedings of ICCV'09, pages 40--47, 2009.
[13]
E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines. In Proceedings of NNSP'97, pages 276--285, 1997.
[14]
R. Pagh. Compressed matrix multiplication. In Proceedings of ICTS'12, pages 442--451, 2012.
[15]
M. Patraşcu and M. Thorup. The power of simple tabulation hashing. In Proceedings of STOC'11, pages 1--10, 2011.
[16]
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in NIPS'08, pages 1177--1184, 2007.
[17]
B. Schökopf and A. J. Smola. Learning with kernels: Support vector machines, regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001.
[18]
S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In Proceedings of ICML'07, pages 807--814, 2007.
[19]
A. J. Smola and B. Schökopf. Sparse greedy matrix approximation for machine learning. In Proceedings of ICML'00, pages 911--918, 2000.
[20]
A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In Proceedings of CVPR'10, pages 3539--3546, 2010.
[21]
S. Vempati, A. Vedaldi, A. Zisserman, and C. V. Jawahar. Generalized RBF feature maps for efficient detection. In Proceedings of BMVC'10, pages 1--11, 2010.
[22]
K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In Proceedings of ICML'09, pages 1113--1120, 2009.
[23]
C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Advances in NIPS'01, pages 682--688, 2001.
[24]
T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs random fourier features: A theoretical and empirical comparison". In Advances in NIPS'12, pages 485--493, 2012.

Cited By

View all
  • (2025)DRFormer: A Discriminable and Reliable Feature Transformer for Person Re-IdentificationIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.352030420(980-995)Online publication date: 2025
  • (2025)Principled neuromorphic reservoir computingNature Communications10.1038/s41467-025-55832-y16:1Online publication date: 14-Jan-2025
  • (2025)A Count Column Sketch Method for Tensor Auto-regression Parameter EstimationCommunications on Applied Mathematics and Computation10.1007/s42967-024-00458-yOnline publication date: 11-Feb-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KDD '13: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining
August 2013
1534 pages
ISBN:9781450321747
DOI:10.1145/2487575
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 August 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. count sketch
  2. fft
  3. polynomial kernel
  4. svm
  5. tensor product

Qualifiers

  • Research-article

Conference

KDD' 13
Sponsor:

Acceptance Rates

KDD '13 Paper Acceptance Rate 125 of 726 submissions, 17%;
Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

Upcoming Conference

KDD '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)128
  • Downloads (Last 6 weeks)16
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)DRFormer: A Discriminable and Reliable Feature Transformer for Person Re-IdentificationIEEE Transactions on Information Forensics and Security10.1109/TIFS.2024.352030420(980-995)Online publication date: 2025
  • (2025)Principled neuromorphic reservoir computingNature Communications10.1038/s41467-025-55832-y16:1Online publication date: 14-Jan-2025
  • (2025)A Count Column Sketch Method for Tensor Auto-regression Parameter EstimationCommunications on Applied Mathematics and Computation10.1007/s42967-024-00458-yOnline publication date: 11-Feb-2025
  • (2025)Separability and scatteredness (S&S) ratio-based efficient SVM regularization parameter, kernel, and kernel parameter selectionPattern Analysis and Applications10.1007/s10044-025-01411-228:1Online publication date: 27-Jan-2025
  • (2024)Fast sampling-based sketches for tensorsProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3694000(47378-47395)Online publication date: 21-Jul-2024
  • (2024)Bilinear Distance Feature Network for Semantic Segmentation in PowerLine Corridor Point CloudsSensors10.3390/s2415502124:15(5021)Online publication date: 2-Aug-2024
  • (2024)Convolution and Cross-Correlation of Count Sketches Enables Fast Cardinality Estimation of Multi-Join QueriesProceedings of the ACM on Management of Data10.1145/36549322:3(1-26)Online publication date: 30-May-2024
  • (2024)Scalable and Adaptive Spectral Embedding for Attributed Graph ClusteringProceedings of the 33rd ACM International Conference on Information and Knowledge Management10.1145/3627673.3679992(3912-3916)Online publication date: 21-Oct-2024
  • (2024)Multi-modal deep feature fusion for superheat identification in aluminum electrolysisSecond International Conference on Informatics, Networking, and Computing (ICINC 2023)10.1117/12.3024737(38)Online publication date: 4-Apr-2024
  • (2024)Asynchronous Parallel Large-Scale Gaussian Process RegressionIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.320060235:6(8683-8694)Online publication date: Jun-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media