Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2488388.2488512acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Inferring dependency constraints on parameters for web services

Published: 13 May 2013 Publication History

Abstract

Recently many popular websites such as Twitter and Flickr expose their data through web service APIs, enabling third-party organizations to develop client applications that provide function-alities beyond what the original websites offer. These client appli-cations should follow certain constraints in order to correctly in-teract with the web services. One common type of such constraints is Dependency Constraints on Parameters. Given a web service operation O and its parameters Pi, Pj, these constraints describe the requirement on one parameter Pi that is dependent on the conditions of some other parameter(s) Pj. For example, when requesting the Twitter operation "GET statuses/user_timeline", a user_id parameter must be provided if a screen_name parameter is not provided. Violations of such constraints can cause fatal errors or incorrect results in the client applications. However, these con-straints are often not formally specified and thus not available for automatic verification of client applications. To address this issue, we propose a novel approach, called INDICATOR, to automatically infer dependency constraints on parameters for web services, via a hybrid analysis of heterogeneous web service artifacts, including the service documentation, the service SDKs, and the web services themselves. To evaluate our approach, we applied INDICATOR to infer dependency constraints for four popular web services. The results showed that INDICATOR effectively infers constraints with an average precision of 94.4% and recall of 95.5%.

References

[1]
Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J. D. 1986. Compilers: Principles, Techniques, and Tools. Addison Wes-ley.
[2]
Bertolino, A., Inverardi, P., Pelliccione, P. and Tivoli, M. 2009. Automatic Synthesis of Behavior Protocols for Com-posable Web-Services. In Proceedings of the 7th Joint Meet-ing of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (Amsterdam, The Netherlands, August 24-28, 2009). ESEC/FSE '09. ACM, New York, NY, 141--150.
[3]
Bruijn, J. D., Fensel, D., Keller, U., Kifer, M., Lausen, H., Krummenacher, R., Polleres, A. and Predoiu, L. 2005. Web Service Modeling Language (WSML). Available at http://www.w3.org/Submission/WSML/.
[4]
Engler, D., Chen, D. Y., Hallem, S., Chou, A. and Chelf, B. 2001. Bugs as deviant behavior: a general approach to infer-ring errors in systems code. In Proceedings of the eighteenth ACM symposium on Operating systems principles (Chateau Lake Louise, Banff, Canada, October 21-24, 2001). SOSP '01. ACM, New York, NY, 57--72.
[5]
Fisher, M., Elbaum, S. and Rothermel, G. 2007. Automated Refinement and Augmentation of Web Service Description Files. Technical Report. University of Nebraska - Lincoln.
[6]
Gabel, M. and Su, Z. D. 2010. Testing mined specifications. In Proceedings of the 20th International Symposium on the Foundations of Software Engineering (Cary, North Carolina, November 11-16, 2012). FSE '12. ACM, New York, NY.
[7]
Halle, S., Bultan, T., Hughes, G., Alkhalaf, M., Villemaire, R. 2010. Runtime verification of web service interface contracts. Computer. 43, 3 (March 2010), 59--66.
[8]
Havelund, K. and Pressburger, T. 1999. Java PathFinder, a translator from Java to Promela. In Proceedings of the 5th and 6th International SPIN Workshops on Theoretical and Practical Aspects of SPIN Model Checking (Trento, Italy, July 5, 1999, Toulouse, France, September 21 and 24, 1999). Springer-Verlag London, UK.
[9]
Hovemeyer, D. and Pugh, W. 2004. Finding bugs is easy. ACM SIGPLAN Notices. 39, 12 (December 2004), 92--106.
[10]
Martin, E., Basu, S. and Xie, T. 2007. Automated testing and response analysis of web services. In Proceedings of the IEEE International Conference on Web Services, Application Services and Industry Track (Salt Lake City, Utah, USA, July 9-13, 2007). ICWS '07. 647--654.
[11]
Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N. and Sycara, K. 2004. OWL-S: Semantic Markup for Web Services. Available at http://www.w3.org/Submission/OWL-S/.
[12]
Pandita, R., Xiao, X. S., Zhong, H., Xie, T., Oney, S. and Paradkar, A. 2012. Inferring method specifications from nat-ural language API descriptions. In Proceedings of the 34th International Conference on Software Engineering (Zurich, Switzerland, June 2-9, 2012). ICSE '12. IEEE Press Pisca-taway, NJ, USA, 815--825.
[13]
Pradel, M. and Gross, T. R. 2012. Leveraging test generation and specification mining for automated bug detection without false positives. In Proceedings of the 2012 International Conference on Software Engineering (Zurich, Switzerland, June 2-9, 2012). ICSE '12. IEEE Press Piscataway, NJ, USA, 288--298.
[14]
Rubinger, B. and Bultan, T. 2010. Contracting the facebook API. In Proceedings Fourth International Workshop on Test-ing, Analysis and Verification of Web Software (Antwerp, Belgium, September 20-24, 2010). TAV-WEB '10. 63--74.
[15]
Weimer, W. and Necula, G. C. 2005. Mining temporal specifications for error detection. In Proceedings of the 11th international conference on Tools and Algorithms for the Con-struction and Analysis of Systems (Edinburgh, U.K., April 4-8, 2005). TACAS '05. Springer-Verlag, Edinburgh, UK, 461--476.
[16]
Wu, Q., Liang, G. T., Wang, Q. X. and Mei, H. 2011. Mining effective temporal specifications from heterogeneous API data. Journal of Computer Science and Technology. 26, 6 (November 2011), 1061--1075.
[17]
Wu, Q., Liang, G. T., Wang, Q. X., Xie, T. and Mei, H. 2011. Iterative mining of resource-releasing specifications. In Pro-ceedings of the 2011 26th IEEE/ACM International Confer-ence on Automated Software Engineering (Lawrence, Kansas, November 6-12, 2011). ASE '11. IEEE Computer Society Washington, DC, USA, 233--242.
[18]
Zhong, H., Zhang, L., Xie, T. and Mei, H. 2009. Inferring resource specifications from natural language API documen-tation. In Proceedings of the 24th IEEE/ACM International Conference on Automated Software Engineering (Auckland, New Zealand, November 16-20, 2009). ASE '09. IEEE Com-puter Society Washington, DC, USA, 307--318.

Cited By

View all
  • (2024)UPBEAT: Test Input Checks of Q# Quantum LibrariesProceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3650212.3652120(186-198)Online publication date: 11-Sep-2024
  • (2022)DocTer: documentation-guided fuzzing for testing deep learning API functionsProceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3533767.3534220(176-188)Online publication date: 18-Jul-2022
  • (2022)Bootstrapping Automated Testing for RESTful Web ServicesIEEE Transactions on Software Engineering10.1109/TSE.2022.318266349:4(1561-1579)Online publication date: 14-Jun-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '13: Proceedings of the 22nd international conference on World Wide Web
May 2013
1628 pages
ISBN:9781450320351
DOI:10.1145/2488388

Sponsors

  • NICBR: Nucleo de Informatcao e Coordenacao do Ponto BR
  • CGIBR: Comite Gestor da Internet no Brazil

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 May 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. constraints
  2. documentation analysis
  3. parameters
  4. service sdk
  5. testing
  6. web service

Qualifiers

  • Research-article

Conference

WWW '13
Sponsor:
  • NICBR
  • CGIBR
WWW '13: 22nd International World Wide Web Conference
May 13 - 17, 2013
Rio de Janeiro, Brazil

Acceptance Rates

WWW '13 Paper Acceptance Rate 125 of 831 submissions, 15%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)21
  • Downloads (Last 6 weeks)3
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)UPBEAT: Test Input Checks of Q# Quantum LibrariesProceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3650212.3652120(186-198)Online publication date: 11-Sep-2024
  • (2022)DocTer: documentation-guided fuzzing for testing deep learning API functionsProceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis10.1145/3533767.3534220(176-188)Online publication date: 18-Jul-2022
  • (2022)Bootstrapping Automated Testing for RESTful Web ServicesIEEE Transactions on Software Engineering10.1109/TSE.2022.318266349:4(1561-1579)Online publication date: 14-Jun-2022
  • (2022)Specification and Automated Analysis of Inter-Parameter Dependencies in Web APIsIEEE Transactions on Services Computing10.1109/TSC.2021.305061015:4(2342-2355)Online publication date: 1-Jul-2022
  • (2021)Automatically Identifying Parameter Constraints in Complex Web APIs: A Case Study at Adyen2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)10.1109/ICSE-SEIP52600.2021.00016(71-80)Online publication date: May-2021
  • (2021)Deep Learning-Based Prediction of Test Input Validity for RESTful APIs2021 IEEE/ACM Third International Workshop on Deep Learning for Testing and Testing for Deep Learning (DeepTest)10.1109/DeepTest52559.2021.00008(9-16)Online publication date: Jun-2021
  • (2020)Automated analysis of inter-parameter dependencies in web APIsProceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings10.1145/3377812.3382173(140-142)Online publication date: 27-Jun-2020
  • (2019)Machine Learning and Constraint Solving for Automated Form Testing2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)10.1109/ISSRE.2019.00030(217-227)Online publication date: Oct-2019
  • (2019)A Catalogue of Inter-parameter Dependencies in RESTful Web APIsService-Oriented Computing10.1007/978-3-030-33702-5_31(399-414)Online publication date: 22-Oct-2019
  • (2017)Supporting Interoperability among Web Services Through Efficient Matching2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC)10.1109/COMPSAC.2017.223(557-566)Online publication date: Jul-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media