Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2556624.2556641acmotherconferencesArticle/Chapter ViewAbstractPublication PagesvamosConference Proceedingsconference-collections
research-article

Towards system analysis with variability model metrics

Published: 22 January 2014 Publication History

Abstract

Variability models are central artifacts in highly configurable systems. They aim at planning, developing, and configuring systems by describing configuration knowledge at different levels of formality. The existence of large models using a variety of modeling concepts in heterogeneous languages with intricate semantics calls for a unified measuring approach. In this position paper, we attempt to take a first step towards such a measurement. We discuss perspectives of metrics, define low-level measurement goals, and conceive and implement metrics based on variability modeling concepts found in real-world languages and models. An evaluation of these metrics with real-world models and codebases provides insight into the benefits of such metrics for the defined perspectives.

References

[1]
cppstats tool. http://fosd.net/cppstats.
[2]
VMM tool. https://bitbucket.org/tberger/vmm.
[3]
M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and P. Lahire. Reverse engineering architectural feature models. In ECSA, 2011.
[4]
N. Andersen, K. Czarnecki, S. She, and A. Wąsowski. Efficient synthesis of feature models. In SPLC, 2012.
[5]
E. Bagheri and D. Gasevic. Assessing the maintainability of software product line feature models using structural metrics. Software Quality Control, 19(3):579--612, Sept. 2011.
[6]
V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric approach. Encyclopedia of software engineering, 2(1994):528--532, 1994.
[7]
D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated analysis of feature models 20 years later: A literature review. Information Systems, 35(6):615--636, 2010.
[8]
T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. Wąsowski. Variability modeling in industry: Practices, benefits, and challenges. Under review.
[9]
T. Berger, R. Rublack, D. Nair, J. M. Atlee, M. Becker, K. Czarnecki, and A. Wąsowski. A survey of variability modeling in industrial practice. In VaMoS, 2013.
[10]
T. Berger and S. She. Formal semantics of the CDL language. Technical Note. Available at http://informatik.uni-leipzig.de/~berger/cdl_semantics.pdf, 2010.
[11]
T. Berger, S. She, K. Czarnecki, and A. Wąsowski. Feature-to-Code mapping in two large product lines. Technical report, University of Leipzig, 2010. Available at http://informatik.uni-leipzig.de/~berger/tr/2010-berger.pdf.
[12]
T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. A study of variability models and languages in the systems software domain. IEEE Transactions on Software Engineering, 39(12):1611--1640, 2013.
[13]
L. Briand, S. Morasca, and V. Basili. Property-based software engineering measurement. IEEE Transactions on Software Engineering, 22(1):68--86, 1996.
[14]
C. Calero, M. Piattini, and M. Genero. Empirical validation of referential integrity metrics. Information and Software Technology, 43(15):949--957, 2001.
[15]
L. Chen and M. A. Babar. A systematic review of evaluation of variability management approaches in software product lines. Information and Software Technology, 53(4):344--362, 2011.
[16]
A. Classen, Q. Boucher, and P. Heymans. A text-based approach to feature modelling: Syntax and semantics of tvl. Science of Computer Programming, 76(12):1130--1143, 2011.
[17]
R. Courtney and D. Gustafson. Shotgun correlations in software measures. Software Engineering Journal, 8(1):5--13, 1993.
[18]
K. Czarnecki, P. Gruenbacher, R. Rabiser, K. Schmid, and A. Wasowski. Cool features and tough decisions: A comparison of variability modeling approaches. In VAMOS, 2012.
[19]
E. A. de Oliveira Junior, I. Gimenes, and J. Maldonado. A metric suite to support software product line architecture evaluation. In CLEI, 2008.
[20]
D. Dhungana, P. Heymans, and R. Rabiser. A formal semantics for decision-oriented variability modeling with DOPLER. In VaMoS, 2010.
[21]
D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer. Integrated tool support for software product line engineering. In ASE, 2007.
[22]
H. Eichelberger, C. Kröher, and K. Schmid. An analysis of variability modeling concepts: Expressiveness vs. analyzability. In ICSR, 2013.
[23]
H. Eichelberger and K. Schmid. A systematic analysis of textual variability modeling languages. In SPLC, 2013.
[24]
K. M. Eisenhardt and M. E. Graebner. Theory building from cases: Opportunities and challenges. Academy of management journal, 50(1):25--32, 2007.
[25]
K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-oriented domain analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, SEI, Carnegie Mellon University, 1990.
[26]
L. M. Laird and M. C. Brennan. Software Measurement and Estimation: A Practical Approach. IEEE, 2007.
[27]
J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An analysis of the variability in 40 preprocessor-based software product lines. In ICSE, 2010.
[28]
R. E. Lopez-Herrejon and S. Trujillo. How complex is my product line? the case for variation point metrics. In VaMoS, 2008.
[29]
R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski. Evolution of the Linux kernel variability model. In SPLC, 2010.
[30]
M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: software product lines online tools. In OOPSLA, 2009.
[31]
M. Mendonça, A. Wasowski, and K. Czarnecki. SAT-based analysis of feature models is easy. In SPLC, 2009.
[32]
S. Nadi and R. Holt. The linux kernel: a case study of build system variability. Journal of Software: Evolution and Process, 2013.
[33]
L. Passos, J. Guo, L. Teixeira, K. Czarnecki, A. Wąsowski, and P. Borba. Coevolution of variability models and related artifacts: A case study from the linux kernel. In SPLC, 2013.
[34]
G. Poels and G. Dedene. Distance-based software measurement: necessary and sufficient properties for software measures. Information and Software Technology, 42(1):35--46, 2000.
[35]
N. J. Salkind. Exploring research. Prentice Hall, 2003.
[36]
S. She and T. Berger. Formal semantics of the Kconfig language. Technical Note. Available at http://eng.uwaterloo.ca/~shshe/kconfig_semantics.pdf, 2010.
[37]
S. She, R. Lotufo, T. Berger, A. Wąsowski, and K. Czarnecki. Reverse engineering feature models. In ICSE, 2011.
[38]
T. Zhang, L. Deng, J. Wu, Q. Zhou, and C. Ma. Some metrics for accessing quality of product line architecture. In CSSE, volume 2, 2008.

Cited By

View all
  • (2023)FeatRacer: Locating Features Through Assisted TraceabilityIEEE Transactions on Software Engineering10.1109/TSE.2023.332471949:12(5060-5083)Online publication date: Dec-2023
  • (2023)Behavior Trees and State Machines in Robotics ApplicationsIEEE Transactions on Software Engineering10.1109/TSE.2023.326908149:9(4243-4267)Online publication date: Sep-2023
  • (2023)Automating Feature Model maintainability evaluation using machine learning techniquesJournal of Systems and Software10.1016/j.jss.2022.111539195:COnline publication date: 1-Jan-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
VaMoS '14: Proceedings of the 8th International Workshop on Variability Modelling of Software-Intensive Systems
January 2014
170 pages
ISBN:9781450325561
DOI:10.1145/2556624
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • University of Duisburg-Essen
  • IT University of Copenhagen
  • UNSA: University of Nice Sophia Antipolis

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 January 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. empirical software engineering
  2. feature modeling
  3. metrics
  4. software product lines
  5. variability modeling

Qualifiers

  • Research-article

Conference

VaMoS '14
Sponsor:
  • UNSA

Acceptance Rates

VaMoS '14 Paper Acceptance Rate 21 of 55 submissions, 38%;
Overall Acceptance Rate 66 of 147 submissions, 45%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)FeatRacer: Locating Features Through Assisted TraceabilityIEEE Transactions on Software Engineering10.1109/TSE.2023.332471949:12(5060-5083)Online publication date: Dec-2023
  • (2023)Behavior Trees and State Machines in Robotics ApplicationsIEEE Transactions on Software Engineering10.1109/TSE.2023.326908149:9(4243-4267)Online publication date: Sep-2023
  • (2023)Automating Feature Model maintainability evaluation using machine learning techniquesJournal of Systems and Software10.1016/j.jss.2022.111539195:COnline publication date: 1-Jan-2023
  • (2022)Synchronous development in open-source projects: A higher-level perspectiveAutomated Software Engineering10.1007/s10515-021-00292-z29:1Online publication date: 1-May-2022
  • (2021)Do Critical Components Smell Bad? An Empirical Study with Component-based Software Product LinesProceedings of the 15th Brazilian Symposium on Software Components, Architectures, and Reuse10.1145/3483899.3483907(21-30)Online publication date: 27-Sep-2021
  • (2021)DyMMer 2.0: A Tool for Dynamic Modeling and Evaluation of Feature ModelProceedings of the XXXV Brazilian Symposium on Software Engineering10.1145/3474624.3476016(121-126)Online publication date: 27-Sep-2021
  • (2021)A machine learning model to classify the feature model maintainabilityProceedings of the 25th ACM International Systems and Software Product Line Conference - Volume A10.1145/3461001.3471152(35-45)Online publication date: 6-Sep-2021
  • (2021)Software product-line evaluation in the largeEmpirical Software Engineering10.1007/s10664-020-09913-926:2Online publication date: 1-Mar-2021
  • (2020)The state of adoption and the challenges of systematic variability management in industryEmpirical Software Engineering10.1007/s10664-019-09787-625:3(1755-1797)Online publication date: 4-Apr-2020
  • (2019)Usage Scenarios for a Common Feature Modeling LanguageProceedings of the 23rd International Systems and Software Product Line Conference - Volume B10.1145/3307630.3342403(174-181)Online publication date: 9-Sep-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media