Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2600918.2600922acmconferencesArticle/Chapter ViewAbstractPublication Pagesih-n-mmsecConference Proceedingsconference-collections
research-article

GSHADE: faster privacy-preserving distance computation and biometric identification

Published: 11 June 2014 Publication History

Abstract

At WAHC'13, Bringer et al. introduced a protocol called SHADE for secure and efficient Hamming distance computation using oblivious transfer only. In this paper, we introduce a generalization of the SHADE protocol, called GSHADE, that enables privacy-preserving computation of several distance metrics, including (normalized) Hamming distance, Euclidean distance, Mahalanobis distance, and scalar product. GSHADE can be used to efficiently compute one-to-many biometric identification for several traits (iris, face, fingerprint) and benefits from recent optimizations of oblivious transfer extensions. GSHADE allows identification against a database of 1000 Eigenfaces in 1.28 seconds and against a database of 10000 IrisCodes in 17.2 seconds which is more than 10 times faster than previous works.

References

[1]
G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and extensions for faster secure computation. In Computer and Communications Security (CCS), pages 535--548. ACM, 2013. Code available at http://encrypto.de/code/OTExtension.
[2]
AT&T Laboratories Cambridge. The database of faces. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
[3]
M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati, P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti, and A. Piva. Privacy-preserving fingercode authentication. In ACM workshop on Multimedia and Security (MMSEC), pages 231--240. ACM, 2010.
[4]
P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. In European Conference on Computer Vision (ECCV), volume 1064 of LNCS, pages 43--58. Springer, 1996.
[5]
M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint identification. In European Symposium on Research in Computer Security (ESORICS), volume 6879 of LNCS, pages 190--209. Springer, 2011.
[6]
D. Bogdanov, R. Talviste, and J. Willemson. Deploying secure multi-party computation for financial data analysis. In Financial Cryptography (FC), volume 7397 of LNCS, pages 57--64. Springer, 2012.
[7]
P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen, M. Króigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft. Secure multiparty computation goes live. In Financial Cryptography (FC), volume 5628 of LNCS, pages 325--343. Springer, 2009.
[8]
J. Bringer, H. Chabanne, and A. Patey. Privacy-preserving biometric identification using secure multiparty computation: An overview and recent trends. IEEE Signal Processing Magazine, 30(2):42--52, 2013.
[9]
J. Bringer, H. Chabanne, and A. Patey. SHADE: Secure HAmming DistancE computation from oblivious transfer. In Workshop on Applied Homomorphic Cryptography (WAHC), volume 7862 of LNCS, pages 164--176. Springer, 2013.
[10]
J. Bringer, M. Favre, H. Chabanne, and A. Patey. Faster secure computation for biometric identification using filtering. In IAPR International Conference on Biometrics (ICB), pages 257--264. IEEE, 2012.
[11]
Carnegie Mellon University. The CMU Multi-PIE face database. http://www.multipie.org.
[12]
S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein. Secure multi-party computation of Boolean circuits with applications to privacy in on-line marketplaces. In Cryptographers' Track at the RSA Conference (CT-RSA), volume 7178 of LNCS, pages 416--432. Springer, 2012. Code available at http://www.ee.columbia.edu/~kwhwang/projects/gmw.html.
[13]
R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic encryption. In EUROCRYPT, volume 2045 of LNCS, pages 280--300. Springer, 2001.
[14]
E. D. Cristofaro and G. Tsudik. Practical private set intersection protocols with linear complexity. In Financial Cryptography (FC), volume 6052 of LNCS, pages 143--159. Springer, 2010.
[15]
I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for on-line auctions. In Australasian Conference on Information Security and Privacy (ACISP), volume 4586 of LNCS, pages 416--430. Springer, 2007.
[16]
J. Daugman. How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1):21--30, 2004.
[17]
C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: An efficient and scalable protocol. In Computer and Communications Security (CCS), pages 789--800. ACM, 2013.
[18]
Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft. Privacy-preserving face recognition. In Privacy Enhancing Technologies Symposium (PETS), volume 5672 of LNCS, pages 235--253. Springer, 2009.
[19]
S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. In CRYPTO, pages 205--210. Springer, 1982.
[20]
C. Gentry. Fully homomorphic encryption using ideal lattices. In Symposium on Theory of Computing (STOC), pages 169--178. ACM, 2009.
[21]
O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols with honest majority. In Symposium on Theory of Computing (STOC), pages 218--229. ACM, 1987.
[22]
R. Gross, I. Matthews, J. F. Cohn, T. Kanade, and S. Baker. Multi-PIE. Image Vision and Computing, 28(5):807--813, 2010.
[23]
M. Günther, R. Wallace, and S. Marcel. An open source framework for standardized comparisons of face recognition algorithms. In Benchmarking Facial Image Analysis Technologies (BeFIT), volume 7585 of LNCS, pages 547--556. Springer, 2012.
[24]
C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols - Techniques and Constructions. Information Security and Cryptography. Springer, 2010.
[25]
W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for Automating Secure Two-partY computations. In Computer and Communications Security (CCS), pages 451--462, 2010.
[26]
Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than custom protocols? In Network and Distributed System Security Symposium (NDSS). The Internet Society, 2012.
[27]
Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. In USENIX Security Symposium. USENIX Association, 2011.
[28]
Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient privacy-preserving biometric identification. In Network and Distributed System Security Symposium (NDSS). The Internet Society, 2011.
[29]
Idiap Research Institute. Face recognition library. https://pypi.python.org/pypi/facereclib.
[30]
Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In CRYPTO, volume 2729 of LNCS, pages 145--161. Springer, 2003.
[31]
A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. FingerCode: A filterbank for fingerprint representation and matching. In Computer Vision and Pattern Recognition (CVPR), pages 187--193. IEEE, 1999.
[32]
V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short secrets. In CRYPTO, volume 8043 of LNCS, pages 54--70. Springer, 2013.
[33]
V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and applications. In International Colloquium on Automata, Languages and Programming (ICALP), volume 5126 of LNCS, pages 486--498. Springer, 2008.
[34]
S. Z. Li and A. K. Jain, editors. Encyclopedia of Biometrics. Springer, 2009.
[35]
Y. Luo, S.-C. S. Cheung, T. Pignata, R. Lazzeretti, and M. Barni. An efficient protocol for private iris-code matching by means of garbled circuits. In International Conference on Image Processing (ICIP), pages 2653--2656. IEEE, 2012.
[36]
M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Symposium On Discrete Algorithms (SODA), pages 448--457. ACM/SIAM, 2001.
[37]
M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. In Conference on Electronic Commerce (EC), pages 129--139. ACM, 1999.
[38]
M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI - a system for secure face identification. In IEEE Symposium on Security and Privacy (S&P), pages 239--254. IEEE, 2010.
[39]
P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT, volume 1592 of LNCS, pages 223--238. Springer, 1999.
[40]
M. O. Rabin. How to exchange secrets with oblivious transfer, TR-81 edition, 1981. Aiken Computation Lab, Harvard University.
[41]
A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient privacy-preserving face recognition. In International Conference on Information Security and Cryptology (ICISC), volume 5984 of LNCS, pages 229--244. Springer, 2009.
[42]
T. Schneider and M. Zohner. GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In Financial Cryptography (FC), volume 7859 of LNCS, pages 275--292. Springer, 2013.
[43]
S. F. Shahandashti, R. Safavi-Naini, and P. Ogunbona. Private fingerprint matching. In Australasian Conference on Information Security and Privacy (ACISP), volume 7372 of LNCS, pages 426--433. Springer, 2012.
[44]
M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71--86, 1991.
[45]
A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In Foundations of Computer Science (FOCS), pages 162--167. IEEE, 1986.

Cited By

View all
  • (2024)PEBASI: A Privacy preserving, Efficient Biometric Authentication Scheme based on IrisesACM Transactions on Privacy and Security10.1145/3677017Online publication date: 11-Jul-2024
  • (2024)Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution2024 IEEE Symposium on Security and Privacy (SP)10.1109/SP54263.2024.00116(655-672)Online publication date: 19-May-2024
  • (2024)A novel quantum protocol for secure hamming distance computationQuantum Information Processing10.1007/s11128-024-04357-223:5Online publication date: 29-Apr-2024
  • Show More Cited By

Index Terms

  1. GSHADE: faster privacy-preserving distance computation and biometric identification

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      IH&MMSec '14: Proceedings of the 2nd ACM workshop on Information hiding and multimedia security
      June 2014
      212 pages
      ISBN:9781450326476
      DOI:10.1145/2600918
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 11 June 2014

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. biometrics
      2. oblivious transfer
      3. privacy
      4. signal processing in the encrypted domain

      Qualifiers

      • Research-article

      Funding Sources

      Conference

      IH&MMSec '14
      Sponsor:

      Acceptance Rates

      IH&MMSec '14 Paper Acceptance Rate 24 of 64 submissions, 38%;
      Overall Acceptance Rate 128 of 318 submissions, 40%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)46
      • Downloads (Last 6 weeks)10
      Reflects downloads up to 13 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)PEBASI: A Privacy preserving, Efficient Biometric Authentication Scheme based on IrisesACM Transactions on Privacy and Security10.1145/3677017Online publication date: 11-Jul-2024
      • (2024)Janus: Safe Biometric Deduplication for Humanitarian Aid Distribution2024 IEEE Symposium on Security and Privacy (SP)10.1109/SP54263.2024.00116(655-672)Online publication date: 19-May-2024
      • (2024)A novel quantum protocol for secure hamming distance computationQuantum Information Processing10.1007/s11128-024-04357-223:5Online publication date: 29-Apr-2024
      • (2024)Efficient Secure Multi-party Computation for Multi-dimensional Arithmetics and Its Application in Privacy-Preserving Biometric IdentificationCryptology and Network Security10.1007/978-981-97-8013-6_1(3-25)Online publication date: 2-Oct-2024
      • (2023)S-BAN: Secure Biometric Authentication using NoiseProceedings of the Fourteenth Indian Conference on Computer Vision, Graphics and Image Processing10.1145/3627631.3627638(1-9)Online publication date: 15-Dec-2023
      • (2023)A Novel Study on Data Science for Data Security and Data Integrity with Enhanced Heuristic Scheduling in Cloud2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS)10.1109/ICACRS58579.2023.10404262(1862-1868)Online publication date: 11-Dec-2023
      • (2022)A novel model to enhance the data security in cloud environmentMultiagent and Grid Systems10.3233/MGS-22036118:1(45-63)Online publication date: 1-Jan-2022
      • (2022) RAP : A Light-Weight Privacy-Preserving Framework for Recommender Systems IEEE Transactions on Services Computing10.1109/TSC.2021.306503515:5(2969-2981)Online publication date: 1-Sep-2022
      • (2022)PPCNN: An efficient privacy‐preserving CNN training and inference frameworkInternational Journal of Intelligent Systems10.1002/int.2303037:12(10988-11018)Online publication date: 23-Aug-2022
      • (2021)A Privacy-Preserving Online Ride-Hailing System Without Involving a Third Trusted ServerIEEE Transactions on Information Forensics and Security10.1109/TIFS.2021.306583216(3068-3081)Online publication date: 2021
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media