Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2603088.2603093acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Logic for communicating automata with parameterized topology

Published: 14 July 2014 Publication History

Abstract

We introduce parameterized communicating automata (PCA) as a model of systems where finite-state processes communicate through FIFO channels. Unlike classical communicating automata, a given PCA can be run on any network topology of bounded degree. The topology is thus a parameter of the system. We provide various Büchi-Elgot-Trakhtenbrot theorems for PCA, which roughly read as follows: Given a logical specification ϕ and a class of topologies T there is a PCA that is equivalent to ϕ on all topologies from T. We give uniform constructions which allow us to instantiate T with concrete classes such as pipelines, ranked trees, grids, rings, etc. The proofs build on a locality theorem for first-order logic due to Schwentick and Barthelmann, and they exploit concepts from the non-parameterized case, notably a result by Genest, Kuske, and Muscholl.

References

[1]
P. A. Abdulla, A. Bouajjani, B. Jonsson, and M. Nilsson. Handling global conditions in parameterized system verification. In Proc. of CAV'99, volume 1633 of LNCS, pages 134--145. Springer, 1999.
[2]
R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs. Theor. Comput. Sci., 331(1):97--114, 2005.
[3]
R. Alur and P. Madhusudan. Adding nesting structure to words. J. ACM, 56(3):1--43, 2009.
[4]
B. Bollig, A. Cyriac, L. Hélouët, A. Kara, and T. Schwentick. Dynamic communicating automata and branching high-level MSCs. In Proc. of LATA'13, volume 7810 of LNCS, pages 177--189. Springer, 2013.
[5]
B. Bollig and D. Kuske. An optimal construction of Hanf sentences. J. Appl. Log., 10(2):179--186, 2012.
[6]
B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO logic. Theor. Comput. Sci., 358(2--3):150--172, 2006.
[7]
A. Bouajjani, P. Habermehl, and T. Vojnar. Verification of parametric concurrent systems with prioritised FIFO resource management. Form. Method. Syst. Des., 32(2):129--172, 2008.
[8]
M. C. Browne, E. M. Clarke, and O. Grumberg. Reasoning about networks with many identical finite state processes. Inf. Comput., 81(1):13--31, 1989.
[9]
J. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik, Grundlag. Math., 5:66--62, 1960.
[10]
J. Chalopin, S. Das, and A. Kosowski. Constructing a map of an anonymous graph: Applications of universal sequences. In Proc. of OPODIS'10, volume 6490 of LNCS, pages 119--134. Springer, 2010.
[11]
G. Delzanno, A. Sangnier, and R. Traverso. Parameterized verification of broadcast networks of register automata. In Proc. of RP'13, volume 8169 of LNCS, pages 109--121. Springer, 2013.
[12]
G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks. In Proc. of CONCUR'10, volume 6269 of LNCS. Springer, 2010.
[13]
G. Delzanno and R. Traverso. Decidability and complexity results for verification of asynchronous broadcast networks. In Proc. of LATA'13, volume 7810 of LNCS, pages 238--249. Springer, 2013.
[14]
C. C. Elgot. Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc., 98:21--52, 1961.
[15]
E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput. Sci., 14(4):527--550, 2003.
[16]
H. Gaifman. On local and nonlocal properties. In J. Stern, editor, Logic Colloquium '81, pages 105--135. North-Holland, 1982.
[17]
P. Gastin and D. Kuske. Uniform satisfiability problem for local temporal logics over Mazurkiewicz traces. Inf. Comput., 208(7):797--816, 2010.
[18]
B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Asynchronous games over tree architectures. In Proc. of ICALP'13, volume 7966 of LNCS, pages 275--286. Springer, 2013.
[19]
B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algorithms for existentially bounded communicating automata. Inf. Comput., 204(6):920--956, 2006.
[20]
B. Genest, D. Kuske, and A. Muscholl. On communicating automata with bounded channels. Fundam. Inform., 80(1-3):147--167, 2007.
[21]
S. M. German and A. P. Sistla. Reasoning about systems with many processes. J. ACM, 39(3):675--735, 1992.
[22]
S. Grumbach and Z. Wu. Logical locality entails frugal distributed computation over graphs (extended abstract). In Proc. of WG'09, volume 5911 of LNCS, pages 154--165. Springer, 2010.
[23]
J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thiagarajan. A theory of regular MSC languages. Inf. Comput., 202(1):1--38, 2005.
[24]
S. Jacobs and R. Bloem. Parameterized synthesis. In Proc. of TACAS'12, volume 7214 of LNCS, pages 362--376. Springer, 2012.
[25]
H. J. Keisler and W. B. Lotfallah. Shrinking games and local formulas. Ann. Pure Appl. Logic, 128(1-3):215--225, 2004.
[26]
D. Kuske. Regular sets of infinite message sequence charts. Inf. Comput., 187:80--109, 2003.
[27]
R. Meyer. On boundedness in depth in the pi-calculus. In Proc. of IFIP-TCS'08, volume 273 of IFIP, pages 477--489. Springer, 2008.
[28]
T. Schwentick and K. Barthelmann. Local normal forms for first-order logic with applications to games and automata. Discrete Math. Theor. Comput. Sci., 3(3):109--124, 1999.
[29]
J. W. Thatcher and J. B. Wright. Generalized finite automata theory with application to a decision problem of second-order logic. Math. Syst. Theory, 2(1):57--81, 1968.
[30]
W. Thomas. Elements of an automata theory over partial orders. In Proc. of POMIV'96, volume 29 of DIMACS. AMS, 1996.
[31]
B. A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian Math. J, 3:103--131, 1962. In Russian; English translation in Amer. Math. Soc. Transl. 59, 1966, 23--55.
[32]
W. Zielonka. Notes on finite asynchronous automata. R. A. I. R. O. --- Informatique Théorique et Applications, 21:99--135, 1987.

Cited By

View all
  • (2019)A fully abstract semantics for value-passing CCS for treesFrontiers of Computer Science: Selected Publications from Chinese Universities10.1007/s11704-018-7069-113:4(828-849)Online publication date: 17-Jul-2019
  • (2016)Verification of Parameterized Communicating Automata via Split-WidthFoundations of Software Science and Computation Structures10.1007/978-3-662-49630-5_12(197-213)Online publication date: 2016
  • (2016)Synthesis of Self-Stabilising and Byzantine-Resilient Distributed SystemsComputer Aided Verification10.1007/978-3-319-41528-4_9(157-176)Online publication date: 13-Jul-2016
  • Show More Cited By

Index Terms

  1. Logic for communicating automata with parameterized topology

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        CSL-LICS '14: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
        July 2014
        764 pages
        ISBN:9781450328869
        DOI:10.1145/2603088
        • Program Chairs:
        • Thomas Henzinger,
        • Dale Miller
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        In-Cooperation

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 14 July 2014

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. communicating automata
        2. message sequence charts
        3. monadic second-order logic
        4. parameterized topology
        5. realizability

        Qualifiers

        • Research-article

        Funding Sources

        • EGIDE/DAAD-Procope (TAMTV)

        Conference

        CSL-LICS '14
        Sponsor:

        Acceptance Rates

        CSL-LICS '14 Paper Acceptance Rate 74 of 212 submissions, 35%;
        Overall Acceptance Rate 215 of 622 submissions, 35%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)5
        • Downloads (Last 6 weeks)2
        Reflects downloads up to 10 Nov 2024

        Other Metrics

        Citations

        Cited By

        View all
        • (2019)A fully abstract semantics for value-passing CCS for treesFrontiers of Computer Science: Selected Publications from Chinese Universities10.1007/s11704-018-7069-113:4(828-849)Online publication date: 17-Jul-2019
        • (2016)Verification of Parameterized Communicating Automata via Split-WidthFoundations of Software Science and Computation Structures10.1007/978-3-662-49630-5_12(197-213)Online publication date: 2016
        • (2016)Synthesis of Self-Stabilising and Byzantine-Resilient Distributed SystemsComputer Aided Verification10.1007/978-3-319-41528-4_9(157-176)Online publication date: 13-Jul-2016
        • (2016)Model Checking Dynamic Distributed SystemsNetworked Systems10.1007/978-3-319-26850-7_4(48-61)Online publication date: 23-Mar-2016
        • (2014)Parameterized Verification of Communicating Automata under Context BoundsReachability Problems10.1007/978-3-319-11439-2_4(45-57)Online publication date: 2014

        View Options

        Get Access

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media