Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2647868.2654948acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Deep Learning for Content-Based Image Retrieval: A Comprehensive Study

Published: 03 November 2014 Publication History
  • Get Citation Alerts
  • Abstract

    Learning effective feature representations and similarity measures are crucial to the retrieval performance of a content-based image retrieval (CBIR) system. Despite extensive research efforts for decades, it remains one of the most challenging open problems that considerably hinders the successes of real-world CBIR systems. The key challenge has been attributed to the well-known ``semantic gap'' issue that exists between low-level image pixels captured by machines and high-level semantic concepts perceived by human. Among various techniques, machine learning has been actively investigated as a possible direction to bridge the semantic gap in the long term. Inspired by recent successes of deep learning techniques for computer vision and other applications, in this paper, we attempt to address an open problem: if deep learning is a hope for bridging the semantic gap in CBIR and how much improvements in CBIR tasks can be achieved by exploring the state-of-the-art deep learning techniques for learning feature representations and similarity measures. Specifically, we investigate a framework of deep learning with application to CBIR tasks with an extensive set of empirical studies by examining a state-of-the-art deep learning method (Convolutional Neural Networks) for CBIR tasks under varied settings. From our empirical studies, we find some encouraging results and summarize some important insights for future research.

    References

    [1]
    D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for boltzmann machines*. Cognitive science, 9(1):147--169, 1985.
    [2]
    A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions using equivalence relations. In ICML, pages 11--18, 2003.
    [3]
    H. Bay, T. Tuytelaars, and L. J. V. Gool. Surf: Speeded up robust features. In ECCV (1), pages 404--417, 2006.
    [4]
    B. C. Becker and E. G. Ortiz. Evaluating open-universe face identification on the web. In CVPR Workshops, pages 904--911, 2013.
    [5]
    Y. Bengio, A. C. Courville, and P. Vincent. Unsupervised feature learning and deep learning: A review and new perspectives. CoRR, abs/1206.5538, 2012.
    [6]
    H. Chang and D.-Y. Yeung. Kernel-based distance metric learning for content-based image retrieval. Image and Vision Computing, 25(5):695--703, 2007.
    [7]
    G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning of image similarity through ranking. Journal of Machine Learning Research, 11:1109--1135, 2010.
    [8]
    D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural networks segment neuronal membranes in electron microscopy images. In NIPS, pages 2852--2860, 2012.
    [9]
    K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms. Journal of Machine Learning Research, 7:551--585, 2006.
    [10]
    J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao, M. Ranzato, A. W. Senior, P. A. Tucker, K. Yang, and A. Y. Ng. Large scale distributed deep networks. In NIPS, pages 1232--1240, 2012.
    [11]
    L. Deng. A tutorial survey of architectures, algorithms, and applications for deep learning. APSIPA Transactions on Signal and Information Processing, 3:e2, 2014.
    [12]
    C. Domeniconi, J. Peng, and D. Gunopulos. Locally adaptive metric nearest-neighbor classification. IEEE Trans. Pattern Anal. Mach. Intell., 24(9):1281--1285, 2002.
    [13]
    J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. CoRR, abs/1310.1531, 2013.
    [14]
    R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. CoRR, abs/1311.2524, 2013.
    [15]
    M. Guillaumin, J. J. Verbeek, and C. Schmid. Is that you? metric learning approaches for face identification. In ICCV, pages 498--505, 2009.
    [16]
    G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE, 29(6):82--97, 2012.
    [17]
    G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527--1554, 2006.
    [18]
    S. C. H. Hoi, W. Liu, M. R. Lyu, and W.-Y. Ma. Learning distance metrics with contextual constraints for image retrieval. In CVPR (2), pages 2072--2078, 2006.
    [19]
    E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving word representations via global context and multiple word prototypes. In ACL (1), pages 873--882, 2012.
    [20]
    G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst, October 2007.
    [21]
    A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern Recognition, 29(8):1233--1244, 1996.
    [22]
    P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman. Online metric learning and fast similarity search. In NIPS, pages 761--768, 2008.
    [23]
    H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid. Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell., 34(9):1704--1716, 2012.
    [24]
    R. Jin, S. Wang, and Y. Zhou. Regularized distance metric learning: Theory and algorithm. In NIPS, pages 862--870, 2009.
    [25]
    Y. Jing and S. Baluja. Visualrank: Applying pagerank to large-scale image search. IEEE Trans. Pattern Anal. Mach. Intell., 30(11):1877--1890, 2008.
    [26]
    A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1106--1114, 2012.
    [27]
    N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar. Attribute and simile classifiers for face verification. In ICCV, pages 365--372, 2009.
    [28]
    Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278--2324, 1998.
    [29]
    J.-E. Lee, R. Jin, and A. K. Jain. Rank-based distance metric learning: An application to image retrieval. In CVPR, 2008.
    [30]
    M. S. Lew, N. Sebe, C. Djeraba, and R. Jain. Content-based multimedia information retrieval: State of the art and challenges. TOMCCAP, 2(1):1--19, 2006.
    [31]
    D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, pages 1150--1157, 1999.
    [32]
    B. S. Manjunath and W.-Y. Ma. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell., 18(8):837--842, 1996.
    [33]
    A. S. Mian, Y. Hu, R. Hartley, and R. A. Owens. Image set based face recognition using self-regularized non-negative coding and adaptive distance metric learning. IEEE Transactions on Image Processing, 22(12):5252--5262, 2013.
    [34]
    T. Mikolov, W. tau Yih, and G. Zweig. Linguistic regularities in continuous space word representations. In HLT-NAACL, pages 746--751, 2013.
    [35]
    M. Norouzi, D. J. Fleet, and R. Salakhutdinov. Hamming distance metric learning. In NIPS, pages 1070--1078, 2012.
    [36]
    A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3):145--175, 2001.
    [37]
    A. Oliva and A. Torralba. Scene-centered description from spatial envelope properties. In Biologically Motivated Computer Vision, pages 263--272, 2002.
    [38]
    J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In CVPR, 2007.
    [39]
    A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an astounding baseline for recognition. CoRR, abs/1403.6382, 2014.
    [40]
    R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In AISTATS, pages 448--455, 2009.
    [41]
    R. Salakhutdinov and G. E. Hinton. Semantic hashing. Int. J. Approx. Reasoning, 50(7):969--978, 2009.
    [42]
    R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted boltzmann machines for collaborative filtering. In ICML, pages 791--798, 2007.
    [43]
    P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. CoRR, abs/1312.6229, 2013.
    [44]
    J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discovering objects and their localization in images. In ICCV, pages 370--377, 2005.
    [45]
    A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell., 22(12):1349--1380, 2000.
    [46]
    D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. He, and C. Miao. Learning to name faces: a multimodal learning scheme for search-based face annotation. In SIGIR, pages 443--452, 2013.
    [47]
    Z. Wang, Y. Hu, and L.-T. Chia. Learning image-to-class distance metric for image classification. ACM TIST, 4(2):34, 2013.
    [48]
    K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2005.
    [49]
    J. Wu and J. M. Rehg. Centrist: A visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1489--1501, 2011.
    [50]
    L. Wu and S. C. H. Hoi. Enhancing bag-of-words models with semantics-preserving metric learning. IEEE MultiMedia, 18(1):24--37, 2011.
    [51]
    L. Wu, S. C. H. Hoi, and N. Yu. Semantics-preserving bag-of-words models and applications. IEEE Transactions on Image Processing, 19(7):1908--1920, 2010.
    [52]
    P. Wu, S. C. H. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao. Online multimodal deep similarity learning with application to image retrieval. In ACM Multimedia, pages 153--162, 2013.
    [53]
    H. Xie, Y. Zhang, J. Tan, L. Guo, and J. Li. Contextual query expansion for image retrieval. IEEE Transactions on Multimedia, 16(4):1104--1114, 2014.
    [54]
    J. Yang, Y.-G. Jiang, A. G. Hauptmann, and C.-W. Ngo. Evaluating bag-of-visual-words representations in scene classification. In Multimedia Information Retrieval, pages 197--206, 2007.
    [55]
    D. Yu, M. L. Seltzer, J. Li, J.-T. Huang, and F. Seide. Feature learning in deep neural networks - a study on speech recognition tasks. CoRR, abs/1301.3605, 2013.
    [56]
    M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. CoRR, abs/1311.2901, 2013.
    [57]
    L. Zhang, Y. Zhang, X. Gu, J. Tang, and Q. Tian. Scalable similarity search with topology preserving hashing. IEEE Transactions on Image Processing, 23(7):3025--3039, 2014.
    [58]
    Y. Zhang, L. Zhang, and Q. Tian. A prior-free weighting scheme for binary code ranking. IEEE Transactions on Multimedia, 16(4):1127--1139, 2014.

    Cited By

    View all
    • (2024)Combining Multi-View UAV Photogrammetry, Thermal Imaging, and Computer Vision Can Derive Cost-Effective Ecological Indicators for Habitat AssessmentRemote Sensing10.3390/rs1606108116:6(1081)Online publication date: 20-Mar-2024
    • (2024)Real Time Vessel Detection Model Using Deep Learning Algorithms for Controlling a Barrier SystemJournal of Marine Science and Engineering10.3390/jmse1208136312:8(1363)Online publication date: 10-Aug-2024
    • (2024)Privacy-aware quantum convolutional neural network for blockchain-based IoT health care dataIntelligent Decision Technologies10.3233/IDT-23038618:2(1337-1354)Online publication date: 7-Jun-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    MM '14: Proceedings of the 22nd ACM international conference on Multimedia
    November 2014
    1310 pages
    ISBN:9781450330633
    DOI:10.1145/2647868
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. content-based image retrieval
    2. convolutional neural networks
    3. deep learning
    4. feature representation

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    MM '14
    Sponsor:
    MM '14: 2014 ACM Multimedia Conference
    November 3 - 7, 2014
    Florida, Orlando, USA

    Acceptance Rates

    MM '14 Paper Acceptance Rate 55 of 286 submissions, 19%;
    Overall Acceptance Rate 995 of 4,171 submissions, 24%

    Upcoming Conference

    MM '24
    The 32nd ACM International Conference on Multimedia
    October 28 - November 1, 2024
    Melbourne , VIC , Australia

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)239
    • Downloads (Last 6 weeks)20
    Reflects downloads up to 09 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Combining Multi-View UAV Photogrammetry, Thermal Imaging, and Computer Vision Can Derive Cost-Effective Ecological Indicators for Habitat AssessmentRemote Sensing10.3390/rs1606108116:6(1081)Online publication date: 20-Mar-2024
    • (2024)Real Time Vessel Detection Model Using Deep Learning Algorithms for Controlling a Barrier SystemJournal of Marine Science and Engineering10.3390/jmse1208136312:8(1363)Online publication date: 10-Aug-2024
    • (2024)Privacy-aware quantum convolutional neural network for blockchain-based IoT health care dataIntelligent Decision Technologies10.3233/IDT-23038618:2(1337-1354)Online publication date: 7-Jun-2024
    • (2024)Classifications, evaluation metrics, datasets, and domains in recommendation services: A surveyInternational Journal of Hybrid Intelligent Systems10.3233/HIS-24000320:2(85-100)Online publication date: 11-Jun-2024
    • (2024)Advanced Image Processing Techniques for Medical Image Retrieval Using Visual Features and Distance MeasuresJournal of Circuits, Systems and Computers10.1142/S0218126624501032Online publication date: 20-Apr-2024
    • (2024)A Mutually Supervised Graph Attention Network for Few-Shot Segmentation: The Perspective of Fully Utilizing Limited SamplesIEEE Transactions on Neural Networks and Learning Systems10.1109/TNNLS.2022.3155486(1-13)Online publication date: 2024
    • (2024)Hash-Based Remote Sensing Image RetrievalIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2024.342935062(1-23)Online publication date: 2024
    • (2024)Shielding Object Detection: Enhancing Adversarial Defense through Ensemble Methods2024 5th Information Communication Technologies Conference (ICTC)10.1109/ICTC61510.2024.10601992(88-97)Online publication date: 10-May-2024
    • (2024)A Systematic Literature Review of Deep Learning Approaches for Sketch-Based Image Retrieval: Datasets, Metrics, and Future DirectionsIEEE Access10.1109/ACCESS.2024.335793912(14847-14869)Online publication date: 2024
    • (2024)Multimodal archive resources organization based on deep learning: a prospective frameworkAslib Journal of Information Management10.1108/AJIM-07-2023-0239Online publication date: 25-Jan-2024
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media