Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Quasirandom Rumor Spreading

Published: 30 October 2014 Publication History

Abstract

We propose and analyze a quasirandom analogue of the classical push model for disseminating information in networks (“randomized rumor spreading”). In the classical model, in each round, each informed vertex chooses a neighbor at random and informs it, if it was not informed before. It is known that this simple protocol succeeds in spreading a rumor from one vertex to all others within O(log n) rounds on complete graphs, hypercubes, random regular graphs, Erdős-Rényi random graphs, and Ramanujan graphs with probability 1 − o(1). In the quasirandom model, we assume that each vertex has a (cyclic) list of its neighbors. Once informed, it starts at a random position on the list, but from then on informs its neighbors in the order of the list. Surprisingly, irrespective of the orders of the lists, the above-mentioned bounds still hold. In some cases, even better bounds than for the classical model can be shown.

References

[1]
S. Angelopoulos, B. Doerr, A. Huber, and K. Panagiotou. 2009. Tight bounds for quasirandom rumor spreading. Electronic Journal of Combinatorics 16, #R102.
[2]
A.-L. Barabási and R. Albert. 1999. Emergence of scaling in random networks. Science 286, 509--512.
[3]
R. D. Barve, E. F. Grove, and J. S. Vitter. 1997. Simple randomized mergesort on parallel disks. Parallel Computing 23, 4--5, 601--631.
[4]
H. Baumann, P. Fraigniaud, H. Harutyunyan, and R. de Verclos. 2012. The worst case behavior of randomized gossip. In Proceedings of the 9th Annual Conference on Theory and Applications of Models of Computation (TAMC). 330--345.
[5]
P. Berenbrink, R. Elsässer, and T. Sauerwald. 2010. Communication complexity of quasirandom rumor spreading. In Proceedings of the 18th European Symposium on Algorithms (ESA). 134--145.
[6]
B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády. 2001. The degree sequence of a scale-free random graph process. Random Structures & Algorithms 18, 279--290.
[7]
S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. 2006. Randomized gossip algorithms. IEEE Transactions on Information Theory and IEEE/ACM Transactions on Networking 52, 2508--2530.
[8]
A. Z. Broder, A. M. Frieze, E. Shamir, and E. Upfal. 1994. Near-perfect token distribution. Random Structures and Algorithms 5, 4, 559--572.
[9]
A. Z. Broder, A. M. Frieze, S. Suen, and E. Upfal. 1998. Optimal construction of edge-disjoint paths in random graphs. SIAM Journal on Computing 28, 2, 541--573.
[10]
F. Chierichetti, S. Lattanzi, and A. Panconesi. 2010a. Almost tight bounds for rumour spreading with conductance. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC). 399--408.
[11]
F. Chierichetti, S. Lattanzi, and A. Panconesi. 2010b. Rumour spreading and graph conductance. In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA). 1657--1663.
[12]
F. Chierichetti, S. Lattanzi, and A. Panconesi. 2011. Rumor spreading in social networks. Theoretical Computer Science 412, 2602--2610.
[13]
F. Chung and L. Lu. 2002. Connected components in random graphs with given expected degree sequences. Annals of Combinatorics 6, 2, 125--145.
[14]
C. Cooper, M. Dyer, and C. Greenhill. 2007a. Sampling regular graphs and a peer-to-peer network. Combinatorics, Probability & Computing 16, 4, 557--593.
[15]
C. Cooper, R. Elsässer, H. Ono, and T. Radzik. 2012. Coalescing random walks and voting on graphs. In Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC). 47--56.
[16]
C. Cooper and A. M. Frieze. 2007. The cover time of sparse random graphs. Random Structures and Algorithms 30, 1--2, 1--16.
[17]
J. Cooper, B. Doerr, T. Friedrich, and J. Spencer. 2010. Deterministic random walks on regular trees. Random Structures and Algorithms 37, 3, 353--366.
[18]
J. Cooper, B. Doerr, J. Spencer, and G. Tardos. 2007b. Deterministic random walks on the integers. European Journal of Combinatorics 28, 8, 2072--2090.
[19]
J. Cooper and J. Spencer. 2006. Simulating a random walk with constant error. Combinatorics, Probability and Computing 15, 815--822.
[20]
A. J. Demers, D. H. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. E. Sturgis, D. C. Swinehart, and D. B. Terry. 1988. Epidemic algorithms for replicated database maintenance. Operating Systems Review 22, 1, 8--32.
[21]
B. Doerr and M. Fouz. 2011. Quasi-random rumor spreading: Reducing randomness can be costly. Information Processing Letters 111, 5, 227--230.
[22]
B. Doerr, M. Fouz, and T. Friedrich. 2011a. Social networks spread rumors in sublogarithmic time. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC). 21--30.
[23]
B. Doerr and T. Friedrich. 2009. Deterministic random walks on the two-dimensional grid. Combinatorics, Probability and Computing 18, 123--144.
[24]
B. Doerr, T. Friedrich, M. Künnemann, and T. Sauerwald. 2011b. Quasirandom rumor spreading: An experimental analysis. Journal of Experimental Algorithmics 16, Article 3.3.
[25]
B. Doerr, T. Friedrich, and T. Sauerwald. 2008. Quasirandom rumor spreading. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 773--781.
[26]
B. Doerr, T. Friedrich, and T. Sauerwald. 2009. Quasirandom rumor spreading: Expanders, push vs. pull, and robustness. In Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP). 366--377.
[27]
B. Doerr, A. Huber, and A. Levavi. 2013. Strong robustness of randomized rumor spreading protocols. Discrete Applied Mathematics 161, 6, 778--793.
[28]
D. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press.
[29]
I. Dumitriu, P. Tetali, and P. Winkler. 2003. On playing golf with two balls. SIAM Journal on Discrete Mathematics 16, 4, 604--615.
[30]
R. Elsässer and T. Sauerwald. 2009. On the runtime and robustness of randomized broadcasting. Theoretical Computer Science 410, 36, 3414--3427.
[31]
U. Feige, D. Peleg, P. Raghavan, and E. Upfal. 1990. Randomized broadcast in networks. Random Structures and Algorithms 1, 4, 447--460.
[32]
N. Fountoulakis and A. Huber. 2009. Quasirandom rumour spreading on the complete graph is as fast as randomized rumour spreading. SIAM Journal on Discrete Mathematics 23, 4, 1964--1991.
[33]
N. Fountoulakis, A. Huber, and K. Panagiotou. 2010. Reliable broadcasting in random networks and the effect of density. In Proceedings of the 29th IEEE International Conference on Computer Communications (INFOCOM). 2552--2560.
[34]
N. Fountoulakis and K. Panagiotou. 2010. Rumor spreading on random regular graphs and expanders. In Proceedings of the 14th International Workshop on Randomization and Computation (RANDOM). 560--573.
[35]
N. Fountoulakis, K. Panagiotou, and T. Sauerwald. 2012. Ultra-fast rumor spreading in social networks. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1642--1660.
[36]
T. Friedrich, M. Gairing, and T. Sauerwald. 2010. Quasirandom load balancing. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1620--1629.
[37]
T. Friedrich and T. Sauerwald. 2010. The cover time of deterministic random walks. Electronic Journal of Combinatorics 17, 1, 1--7. R167.
[38]
A. M. Frieze and G. R. Grimmett. 1985. The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10, 57--77.
[39]
G. Giakkoupis. 2011. Tight bounds for rumor spreading in graphs of a given conductance. In Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS). 57--68.
[40]
G. Giakkoupis, T. Sauerwald, H. Sun, and P. Woelfel. 2012. Low randomness rumor spreading via hashing. In Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS). 314--325.
[41]
G. Giakkoupis and P. Woelfel. 2011. On the randomness requirements of rumor spreading. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 449--461.
[42]
S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. 1988. A survey of gossiping and broadcasting in communication networks. Networks 18, 4, 319--349.
[43]
S. Hoory, N. Linial, and A. Wigderson. 2006. Expander graphs and their applications. Bulletin of the American Mathematical Society 43, 439--561.
[44]
N. Kahale. 1995. Eigenvalue and expansion of regular graphs. Journal of the ACM 42, 5, 1091--1106.
[45]
R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. 2000. Randomized rumor spreading. In Proceedings of the 41st IEEE Symposium on Foundations of Computer Science (FOCS). 565--574.
[46]
D. Kempe, A. Dobra, and J. Gehrke. 2003. Gossip-based computation of aggregate information. In Proceedings of the 44th IEEE Symposium on Foundations of Computer Science (FOCS). 482--491.
[47]
M. Kleber. 2005. Goldbug variations. The Mathematical Intelligencer 27, 55--63.
[48]
P. Mahlmann and C. Schindelhauer. 2006. Distributed random digraph transformations for peer-to-peer networks. In Proceedings of the 18th ACM Symposium on Parallel Algorithms and Architectures (SPAA). 308--317.
[49]
C. McDiarmid. 1989. On the method of bounded differences. In Surveys in Combinatorics, 1989 (Norwich, 1989). London Mathematical Society Lecture Note Series, vol. 141. Cambridge University Press, Cambridge, 148--188.
[50]
M. Mitzenmacher and E. Upfal. 2005. Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press.
[51]
D. Mosk-Aoyama and D. Shah. 2006. Computing separable functions via gossip. In Proceedings of the 25th ACM-SIGOPT Principles of Distributed Computing (PODC). 113--122.
[52]
H. Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA.
[53]
B. Pittel. 1987. On spreading a rumor. SIAM Journal on Applied Mathematics 47, 1, 213--223.
[54]
V. B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy. 1996. Eulerian walkers as a model of self-organized criticality. Physical Review Letters 77, 5079--5082.
[55]
Y. Rabani, A. Sinclair, and R. Wanka. 1998. Local divergence of Markov chains and the analysis of iterative load balancing. In Proceedings of the 39th IEEE Symposium on Foundations of Computer Science (FOCS). 694--705.
[56]
T. Sauerwald. 2010. On mixing and edge expansion properties in randomized broadcasting. Algorithmica 56, 1, 51--88.
[57]
R. M. Tanner. 1984. Explicit concentrators from generalized N-gons. SIAM Journal on Algebraic Discrete Methods 5, 3, 287--293.
[58]
I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. 1996. Smell as a computational resource—a lesson we can learn from the ant. In Proceedings of the 4th Israel Symposium on Theory of Computing and Systems (ISTCS). 219--230.
[59]
I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. 1999. Distributed covering by ant-robots using evaporating traces. IEEE Transactions on Robotics and Automation 15, 5, 918--933.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 11, Issue 2
November 2014
215 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/2685353
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 October 2014
Accepted: 01 July 2013
Revised: 01 July 2013
Received: 01 June 2012
Published in TALG Volume 11, Issue 2

Check for updates

Author Tags

  1. Distributed computing
  2. broadcasting
  3. expander
  4. quasirandomness
  5. random graphs
  6. rumor spreading

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)52
  • Downloads (Last 6 weeks)13
Reflects downloads up to 03 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Messy Broadcasting in GridAlgorithms10.3390/a1707031017:7(310)Online publication date: 12-Jul-2024
  • (2023)On Reconstructing the Patient Zero from Sensor Measurements2023 IEEE 43rd International Conference on Distributed Computing Systems (ICDCS)10.1109/ICDCS57875.2023.00065(1-11)Online publication date: Jul-2023
  • (2023)Everyone Knows That Everyone Knows: Gossip Protocols for Super ExpertsStudia Logica10.1007/s11225-022-10032-3111:3(453-499)Online publication date: 1-Jun-2023
  • (2021)Everyone Knows that Everyone KnowsMathematics, Logic, and their Philosophies10.1007/978-3-030-53654-1_5(117-133)Online publication date: 9-Feb-2021
  • (2019)How to Spread a RumorProceedings of the 2019 ACM Symposium on Principles of Distributed Computing10.1145/3293611.3331622(24-33)Online publication date: 16-Jul-2019
  • (2019)Revisiting Asynchronous Rumor Spreading in the Blockchain Era2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)10.1109/ICPADS47876.2019.00048(284-293)Online publication date: Dec-2019
  • (2018)Unbounded Discrepancy of Deterministic Random Walks on GridsSIAM Journal on Discrete Mathematics10.1137/17M113108832:4(2441-2452)Online publication date: 18-Oct-2018
  • (2018)Deterministic Random Walks for Rapidly Mixing ChainsSIAM Journal on Discrete Mathematics10.1137/16M108766732:3(2180-2193)Online publication date: 30-Aug-2018
  • (2018)Dynamic GossipBulletin of the Iranian Mathematical Society10.1007/s41980-018-0160-4Online publication date: 6-Sep-2018
  • (2018)The Expected Duration of Sequential GossipingMulti-Agent Systems and Agreement Technologies10.1007/978-3-030-01713-2_10(131-146)Online publication date: 14-Oct-2018
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media