Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
column

Beautiful structures: an appreciation of the contributions of Alan Selman

Published: 17 September 2014 Publication History
  • Get Citation Alerts
  • First page of PDF

    References

    [1]
    M. Agrawal and V. Arvind. Quasi-linear truth--table reductions to P-selective sets. Theoretical Computer Science, 158(1--2):361--370, 1996.
    [2]
    L. Adleman and K. Manders. Reducibility, randomness, and intractibility. In Proceedings of the 9th ACM Symposium on Theory of Computing, pages 151--153. ACM Press, May 1977.
    [3]
    J. Balcázar, R. Book, T. Long, U. Schöning, and A. Selman. Sparse oracles and uniform complexity classes. In Proceedings of the 25th IEEE Symposium on Foundations of Computer Science, pages 308--313. IEEE Computer Society Press, October 1984.
    [4]
    J. Balcázar, R. Book, and U. Schöning. The polynomial-time hierarchy and sparse oracles. Journal of the ACM, 33(3):603--617, 1986.
    [5]
    L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell University, Ithaca, NY, 1977.
    [6]
    L. Babai and L. Fortnow. Arithmetization: a new method in structural complexity theory. Computational Complexity, 1(1):41--66, 1991.
    [7]
    T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM Journal on Computing, 4(4):431--442, 1975.
    [8]
    L. Berman and J. Hartmanis. On isomorphisms and density of NP and other complete sets. SIAM Journal on Computing, 6(2):305--322, 1977.
    [9]
    R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Information and Computation, 120(2):304--314, 1995.
    [10]
    R. Book, T. Long, and A. Selman. Quantitative relativizations of complexity classes. SIAM Journal on Computing, 13(3):461--487, 1984.
    [11]
    R. Book, T. Long, and A. Selman. Qualitative relativizations of complexity classes. Journal of Computer and System Sciences, 30(3):395--413, 1985.
    [12]
    R. Book. Bounded query machines: On NP and PSPACE. Theoretical Computer Science, 15:27--39, 1981.
    [13]
    R. Book. Towards a theory of relativizations: Positive relativizations. In Proceedings of the 4th Annual Symposium on Theoretical Aspects of Computer Science, pages 1--21. Springer-Verlag Lecture Notes in Computer Science #247, 1987.
    [14]
    R. Book. Restricted relativizations of complexity classes. In J. Hartmanis, editor, Computational Complexity Theory, pages 47--74. American Mathematical Society, 1989. Proceedings of Symposia in Applied Mathematics #38.
    [15]
    G. Brassard. A note on the complexity of cryptography. IEEE Transactions on Information Theory, 25(2):232--233, 1979.
    [16]
    T. Baker and A. Selman. A second step toward the polynomial hierarchy. Theoretical Computer Science, 8:177--187, 1979.
    [17]
    R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. Hástad, and D. Ranjan. The Random Oracle Hypothesis is false. Journal of Computer and System Sciences, 49(1):24--39, 1994.
    [18]
    J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers yield improved Karp-Lipton collapse results. Information and Computation, 198(1):1--23, 2005.
    [19]
    Clay Mathematics Institute. www.claymath.org/millennium-problems. URL verified June 2014.
    [20]
    D. Du and K. Ko. Theory of Computational Complexity. John Wiley and Sons, 2000.
    [21]
    S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with applications to public-key cryptography. Information and Control, 61(2):159--173, 1984.
    [22]
    S. Fenner, L. Fortnow, and S. Kurtz. The Isomorphism Conjecture holds relative to an oracle. SIAM Journal on Computing, 25(1):193--206, 1996.
    [23]
    S. Fenner, S. Homer, M. Ogiwara, and A. Selman. Oracles that compute values. SIAM Journal on Computing, 26(4):1043--1065, 1997.
    [24]
    P. Faliszewski and M. Ogihara. Separating the notions of self- and autoreducibility. In Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science, pages 308--315. Springer Verlag Lecture Notes in Computer Science #3618, August/September 2005.
    [25]
    L. Fortnow and M. Sipser. Are there interactive protocols for co-NP? Information Processing Letters, 28:249--251, 1988.
    [26]
    J. Goldsmith, L. Hemachandra, D. Joseph, and P. Young. Near-testable sets. SIAM Journal on Computing, 20(3):506--523, 1991.
    [27]
    C. Glaser, A. Hughes, A. Selman, and N. Wisiol. Disjoint NP-pairs and propositional proof systems. SIGACT News, 45(4), 2014. In Preparation.
    [28]
    C. Glaser, D. Nguyen, C. Reitwiesner, A. Selman, and M. Witek. Autoreducibility of complete sets for log--space and polynomial-time reductions. In Proceedings of the 40th International Colloquium on Automata, Languages, and Programming, Part I, pages 473--484, July 2013.
    [29]
    C. Glaser, M. Ogihara, A. Pavan, A. Selman, and L. Zhang. Autoreducibility and mitocity. SIGACT News, 40(3):61--76, 2009.
    [30]
    J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM Journal on Computing, 17(2):309--335, 1988.
    [31]
    J. Hástad. Computational Limitations of Small-Depth Circuits. MIT Press, 1987.
    [32]
    J. Hartmanis, R. Chang, S. Chari, D. Ranjan, and P. Rohatgi. Relativization: A revisionistic retrospective. Bulletin of the EATCS, 47:144--153, 1992.
    [33]
    L. Hemachandra and A. Hoene. On sets with efficient implicit membership tests. SIAM Journal on Computing, 20(6):1148--1156, 1991.
    [34]
    L. Hemaspaandra, A. Hoene, A. Naik, M. Ogiwara, A. Selman, T. Thierauf, and J. Wang. Nondeterministically selective sets. International Journal of Foundations of Computer Science, 6(4):403--416, 1995.
    [35]
    E. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. P-selective sets and reducing search to decision vs. self-reducibility. Journal of Computer and System Sciences, 53(2):194--209, 1996.
    [36]
    L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman. Computing solutions uniquely collapses the polynomial hierarchy. SIAM Journal on Computing, 25(4):697--708, 1996.
    [37]
    L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Springer- Verlag, 2002.
    [38]
    L. Hemaspaandra, M. Ogihara, and G. Wechsung. Reducing the number of solutions of NP functions. Journal of Computer and System Sciences, 64(2):311--328, 2002.
    [39]
    A. Hughes, A. Pavan, N. Russell, and A. Selman. A thirty year old conjecture about promise problems. In Proceedings of the 39th International Colloquium on Automata, Languages, and Programming, Part I, pages 473--484. Springer-Verlag Lecture Notes in Computer Science #7391, July 2012.
    [40]
    L. Hemachandra and R. Rubinstein. Separating complexity classes with tally oracles. Theoretical Computer Science, 92(2):309--318, 1992.
    [41]
    L. Hemaspaandra and J. Rothe. Creating strong, total, commutative, associative oneway functions from any one-way function in complexity theory. Journal of Computer and System Sciences, 58(3):648--659, 1999.
    [42]
    S. Homer and A. Selman. Oracles for structural properties: The isomorphism problem and public-key cryptography. Journal of Computer and System Sciences, 44(2):287-- 301, 1992.
    [43]
    L. Hemaspaandra and A. Selman, editors. Complexity Theory Retrospective II. Springer-Verlag, 1997.
    [44]
    S. Homer and A. Selman. Computability and Complexity Theory. Springer-Verlag, 2nd edition, 2011.
    [45]
    L. Hemaspaandra and L. Torenvliet. Theory of Semi-Feasible Algorithms. Springer-- Verlag, 2003.
    [46]
    C. Jockusch. Semirecursive sets and positive reducibility. Transactions of the AMS, 131(2):420--436, 1968.
    [47]
    R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In Proceedings of the 12th ACM Symposium on Theory of Computing, pages 302--309. ACM Press, April 1980. An extended version has also appeared as: Turing machines that take advice, L'Enseignement Mathématique, 2nd series, 28:191--209, 1982.
    [48]
    K. Ko. On self-reducibility and weak P-selectivity. Journal of Computer and System Sciences, 26(2):209--221, 1983.
    [49]
    K. Ko. On some natural complete operators. Theoretical Computer Science, 37(1):1--30, 1985.
    [50]
    R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities. Theoretical Computer Science, 1(2):103--124, 1975.
    [51]
    T. Long. Strong nondeterministic polynomial--time reducibilities. Theoretical Computer Science, 21(1):1--25, 1982.
    [52]
    T. Long and A. Selman. Relativizing complexity classes with sparse oracles. Journal of the ACM, 33(3):618--627, 1986.
    [53]
    A. Meyer and M. Paterson. With what frequency are apparently intractable problems difficult? Technical Report MIT/LCS/TM-126, Laboratory for Computer Science, MIT, Cambridge, MA, 1979.
    [54]
    A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squaring requires exponential space. In Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, pages 125--129. IEEE Press, October 1972.
    [55]
    A. Naik, J. Rogers, J. Royer, and A. Selman. A hierarchy based on output multiplicity. Theoretical Computer Science, 207(1):131--157, 1998.
    [56]
    D. Nguyen and A. Selman. Non--autoreducible sets for NEXP. In Proceedings of the 31st Annual Symposium on Theoretical Aspects of Computer Science, pages 590--601, March 2014.
    [57]
    M. Ogihara. Polynomial--time membership comparable sets. SIAM Journal on Computing, 24(5):1068--1081, 1995.
    [58]
    M. Ogiwara and O. Watanabe. On polynomial-time bounded truth--table reducibility of NP sets to sparse sets. SIAM Journal on Computing, 20(3):471--483, June 1991.
    [59]
    C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
    [60]
    J. Rogers. The Isomorphism Conjecture holds and one-way functions exist relative to an oracle. Journal of Computer and System Sciences, 54(3):412--423, 1997.
    [61]
    M. Rabi and A. Sherman. An observation on associative one-way functions in complexity theory. Information Processing Letters, 64(5):239--244, 1997.
    [62]
    U. Schöning. A low and a high hierarchy within NP. Journal of Computer and System Sciences, 27(1):14--28, 1983.
    [63]
    U. Schöning. Complete sets and closeness to complexity classes. Mathematical Systems Theory, 19(1):29--42, 1986.
    [64]
    A. Selman. On the structure of NP. Notices of the AMS, 21(5):A-498, 1974. Erratum in the same journal, 21(6):310.
    [65]
    A. Selman. Polynomial time enumeration reducibility. SIAM Journal on Computing, 7(4):440--457, 1978.
    [66]
    A. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP. Mathematical Systems Theory, 13(1):55--65, 1979.
    [67]
    A. Selman. Some observations on NP real numbers and P-selective sets. Journal of Computer and System Sciences, 23(3):326--332, 1981.
    [68]
    A. Selman. Analogues of semirecursive sets and effective reducibilities to the study of NP complexity. Information and Control, 52(1):36--51, 1982.
    [69]
    A. Selman. Reductions on NP and P-selective sets. Theoretical Computer Science, 19(3):287--304, 1982.
    [70]
    A. Selman. Natural self--reducible sets. SIAM Journal on Computing, 17(5):989--996, 1988.
    [71]
    A. Selman, editor. Complexity Theory Retrospective. Springer-Verlag, 1990.
    [72]
    A. Selman. A survey of one-way functions in complexity theory. Mathematical Systems Theory, 25(3):203--221, 1992.
    [73]
    A. Selman. A taxonomy of complexity classes of functions. Journal of Computer and System Sciences, 48(2):357--381, 1994.
    [74]
    A. Selman. Much ado about functions. In Proceedings of the 11th Annual IEEE Conference on Computational Complexity, pages 198--212. IEEE Computer Society Press, May 1996.
    [75]
    A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869--877, 1992.
    [76]
    L. Stockmeyer. The polynomial--time hierarchy. Theoretical Computer Science, 3(1):1--22, 1976.
    [77]
    A. Selman, Xu M.--R., and R. Book. Positive relativizations of complexity classes. SIAM Journal on Computing, 12(3):565--579, 1983.
    [78]
    L. Valiant. The relative complexity of checking and evaluating. Information Processing Letters, 5(1):20--23, 1976.
    [79]
    O. Watanabe. On hardness of one--way functions. Information Processing Letters, 27(3):151--157, 1988.
    [80]
    A. Yao. Separating the polynomial--time hierarchy by oracles. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science, pages 1--10. IEEE Computer Society Press, October 1985.

    Cited By

    View all

    Index Terms

    1. Beautiful structures: an appreciation of the contributions of Alan Selman

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM SIGACT News
        ACM SIGACT News  Volume 45, Issue 3
        September 2014
        126 pages
        ISSN:0163-5700
        DOI:10.1145/2670418
        Issue’s Table of Contents

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 17 September 2014
        Published in SIGACT Volume 45, Issue 3

        Check for updates

        Qualifiers

        • Column

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 10 Aug 2024

        Other Metrics

        Citations

        Cited By

        View all

        View Options

        Get Access

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media