Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Leveraging Weighted Automata in Compositional Reasoning about Concurrent Probabilistic Systems

Published: 14 January 2015 Publication History

Abstract

We propose the first sound and complete learning-based compositional verification technique for probabilistic safety properties on concurrent systems where each component is an Markov decision process. Different from previous works, weighted assumptions are introduced to attain completeness of our framework. Since weighted assumptions can be implicitly represented by multi-terminal binary decision diagrams (MTBDD's), we give an L*-based learning algorithm for MTBDD's to infer weighted assumptions. Experimental results suggest promising outlooks for our compositional technique.

Supplementary Material

MPG File (p503-sidebyside.mpg)

References

[1]
IEEE standard for a high-performance serial bus. IEEE Std 1394--2008, pages 1--954, Oct 2008.
[2]
IEEE standard for information technology--telecommunications and information exchange between systems local and metropolitan area networks--specific requirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11--2012 (Revision of IEEE Std 802.11--2007), pages 1--2793, March 2012.
[3]
D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):87--106, 1987.
[4]
J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory. Journal of Algorithms, 11(3):441--460, 1990.
[5]
C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
[6]
C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic model checking for probabilistic processes. In ICALP, volume 1256 of LNCS, pages 430--440. Springer, 1997.
[7]
A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varricchio. Learning functions represented as multiplicity automata. Journal of ACM, 47(3):506--530, May 2000. .
[8]
A. Bianco and L. de Alfaro. Model checking of probabalistic and nondeterministic systems. In FSTTCS, volume 1026 of LNCS, pages 499--513. Springer, 1995.
[9]
B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. R. Piegdon. libalf: The automata learning framework. In CAV, volume 6174 of LNCS, pages 360--364. Springer, 2010.
[10]
Y. Chen, H. Mao, M. Jaeger, T. Nielsen, K. Guldstrand Larsen, and B. Nielsen. Learning Markov models for stationary system behaviors. In NASA Formal Methods, volume 7226 of LNCS, pages 216--230. Springer, 2012.
[11]
Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.- Y. Wang. Automated assume-guarantee reasoning through implicit learning. In CAV, volume 6174 of LNCS, pages 511--526. Springer, 2010.
[12]
E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In CAV, volume 1855 of LNCS, pages 154--169. Springer, 2000.
[13]
J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning assumptions for compositional verification. In TACAS, volume 2619 of LNCS, pages 331--346. Springer, 2003.
[14]
J. M. Cobleigh, G. S. Avrunin, and L. A. Clarke. Breaking up is hard to do: An evaluation of automated assume-guarantee reasoning. ACM Transactions on Software Engineering and Methodology (TOSEM), 17 (2):7, 2008.
[15]
L. De Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic model checking of probabilistic processes using MTBDDs and the Kronecker representation. In TACAS, volume 1758 of LNCS, pages 395--410. Springer, 2000.
[16]
L. Feng, M. Kwiatkowska, and D. Parker. Compositional verification of probabilistic systems using learning. In QEST, pages 133--142. IEEE, 2010.
[17]
L. Feng, T. Han, M. Kwiatkowska, and D. Parker. Learning-based compositional verification for synchronous probabilistic systems. In ATVA, volume 6996 of LNCS, pages 511--521. Springer-Verlag, 2011.
[18]
M. Fujita, P. C. McGeer, and J.-Y. Yang. Multi-terminal binary decision diagrams: An efficient data structure for matrix representation. Formal Methods in System Design, 10(2/3):149--169, 1997.
[19]
R. Gavaldà and D. Guijarro. Learning ordered binary decision diagrams. In ALT, volume 997 of LNCS, pages 228--238. Springer, 1995.
[20]
M. Gheorghiu, D. Giannakopoulou, and C. S. Păsăreanu. Refining interface alphabets for compositional verification. In TACAS, volume 4424 of LNCS, pages 292--307. Springer, 2007.
[21]
M. Gheorghiu Bobaru, C. S. Păsăreanu, and D. Giannakopoulou. Automated assume-guarantee reasoning by abstraction refinement. In CAV, volume 5123 of LNCS, pages 135--148. Springer, 2008.
[22]
A. Gupta, K. L. McMillan, and Z. Fu. Automated assumption generation for compositional verification. In CAV, volume 4590 of LNCS, pages 420--432. Springer, 2007.
[23]
T. Han, J.-P. Katoen, and D. Berteun. Counterexample generation in probabilistic model checking. IEEE Transactions on Software Engineering, 35(2):241--257, 2009.
[24]
H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal aspects of computing, 6(5):512--535, 1994.
[25]
F. He, B.-Y. Wang, L. Yin, and L. Zhu. Symbolic assume-guarantee reasoning through BDD learning. In ICSE, pages 1071--1082. ACM, 2014.
[26]
A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic verification of probabilistic systems. In TACAS, volume 3920 of LNCS, pages 441--444. Springer, 2006.
[27]
J.-P. Katoen, L. Song, and L. Zhang. Probably safe or live. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 55:1--55:10. ACM, 2014.
[28]
S. Kimura and E. M. Clarke. A parallel algorithm for constructing binary decision diagrams. In ICCD, pages 220--223. IEEE, 1990.
[29]
A. Komuravelli, C. S. Păsăreanu, and E. M. Clarke. Assume-guarantee abstraction refinement for probabilistic systems. In CAV, volume 7358 of LNCS, pages 310--326. Springer, 2012.
[30]
A. Komuravelli, C. S. Păsăreanu, and E. M. Clarke. Learning probabilistic systems from tree samples. In LICS, pages 441--450. IEEE, 2012.
[31]
M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with PRISM: A hybrid approach. International Journal on Software Tools for Technology Transfer, 6(2):128--142, 2004.
[32]
M. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee verification for probabilistic systems. In TACAS, volume 6015 of LNCS, pages 23--37. Springer, 2010.
[33]
D. Lehmann and M. O. Rabin. On the advantage of free choice: A symmetric and fully distributed solution to the dining philosophers problem (extended abstract). In POPL, pages 133--138. ACM, 1981.
[34]
H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen. Learning probabilistic automata for model checking. In QEST, pages 111--120. IEEE, 2011.
[35]
H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen. Learning Markov decision processes for model checking. arXiv preprint arXiv:1212.3873, 2012.
[36]
R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
[37]
A. Nakamura. An efficient query learning algorithm for ordered binary decision diagrams. Information and Computation, 201(2):178--198, 2005.
[38]
D. A. Parker. Implementation of symbolic model checking for probabilistic systems. PhD thesis, University of Birmingham, 2002.
[39]
R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In CONCUR, volume 836 of LNCS, pages 481--496. Springer, 1994.
[40]
W.-G. Tzeng. Learning probabilistic automata and Markov chains via queries. Machine Learning, 8(2):151--166, 1992.
[41]
R. Wimmer, N. Jansen, E. Ábrahám, B. Becker, and J.-P. Katoen. Minimal critical subsystems for discrete-time Markov models. In TACAS, volume 7214 of LNCS, pages 299--314. Springer, 2012.
[42]
R. Wimmer, N. Jansen, A. Vorpahl, E. Ábrahám, J.-P. Katoen, and B. Becker. High-level counterexamples for probabilistic automata. In QEST, pages 39--54. IEEE, 2013.
[43]
H. Zhu, F. He, W. N. Hung, X. Song, and M. Gu. Data mining based decomposition for assume-guarantee reasoning. In FMCAD, pages 116--119. IEEE, 2009.

Cited By

View all
  • (2017)A Novel Learning Algorithm for Büchi Automata Based on Family of DFAs and Classification TreesTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-662-54577-5_12(208-226)Online publication date: 31-Mar-2017
  • (2016)Learning-Based Assume-Guarantee Regression VerificationComputer Aided Verification10.1007/978-3-319-41528-4_17(310-328)Online publication date: 13-Jul-2016
  • (2015)Probabilistic Bisimulation for Realistic SchedulersFM 2015: Formal Methods10.1007/978-3-319-19249-9_16(248-264)Online publication date: 2015
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGPLAN Notices
ACM SIGPLAN Notices  Volume 50, Issue 1
POPL '15
January 2015
682 pages
ISSN:0362-1340
EISSN:1558-1160
DOI:10.1145/2775051
  • Editor:
  • Andy Gill
Issue’s Table of Contents
  • cover image ACM Conferences
    POPL '15: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
    January 2015
    716 pages
    ISBN:9781450333009
    DOI:10.1145/2676726
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 January 2015
Published in SIGPLAN Volume 50, Issue 1

Check for updates

Author Tags

  1. algorithmic learning
  2. compositional verification
  3. probabilistic model checking

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2017)A Novel Learning Algorithm for Büchi Automata Based on Family of DFAs and Classification TreesTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-662-54577-5_12(208-226)Online publication date: 31-Mar-2017
  • (2016)Learning-Based Assume-Guarantee Regression VerificationComputer Aided Verification10.1007/978-3-319-41528-4_17(310-328)Online publication date: 13-Jul-2016
  • (2015)Probabilistic Bisimulation for Realistic SchedulersFM 2015: Formal Methods10.1007/978-3-319-19249-9_16(248-264)Online publication date: 2015
  • (2021)A novel learning algorithm for Büchi automata based on family of DFAs and classification treesInformation and Computation10.1016/j.ic.2020.104678281:COnline publication date: 1-Dec-2021
  • (2018)Probabilistic bisimulation for realistic schedulersActa Informatica10.1007/s00236-018-0313-155:6(461-488)Online publication date: 1-Sep-2018
  • (2017)Learning to Complement Büchi AutomataVerification, Model Checking, and Abstract Interpretation10.1007/978-3-319-73721-8_15(313-335)Online publication date: 29-Dec-2017
  • (2016)Learning Weighted Assumptions for Compositional Verification of Markov Decision ProcessesACM Transactions on Software Engineering and Methodology10.1145/290794325:3(1-39)Online publication date: 6-Jun-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media