Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Compiler Management of Communication and Parallelism for Quantum Computation

Published: 14 March 2015 Publication History

Abstract

Quantum computing (QC) offers huge promise to accelerate a range of computationally intensive benchmarks. Quantum computing is limited, however, by the challenges of decoherence: i.e., a quantum state can only be maintained for short windows of time before it decoheres. While quantum error correction codes can protect against decoherence, fast execution time is the best defense against decoherence, so efficient architectures and effective scheduling algorithms are necessary. This paper proposes the Multi-SIMD QC architecture and then proposes and evaluates effective schedulers to map benchmark descriptions onto Multi-SIMD architectures. The Multi-SIMD model consists of a small number of SIMD regions, each of which may support operations on up to thousands of qubits per cycle.
Efficient Multi-SIMD operation requires efficient scheduling. This work develops schedulers to reduce communication requirements of qubits between operating regions, while also improving parallelism.We find that communication to global memory is a dominant cost in QC. We also note that many quantum benchmarks have long serial operation paths (although each operation may be data parallel). To exploit this characteristic, we introduce Longest-Path-First Scheduling (LPFS) which pins operations to SIMD regions to keep data in-place and reduce communication to memory. The use of small, local scratchpad memories also further reduces communication. Our results show a 3% to 308% improvement for LPFS over conventional scheduling algorithms, and an additional 3% to 64% improvement using scratchpad memories. Our work is the most comprehensive software-to-quantum toolflow published to date, with efficient and practical scheduling techniques that reduce communication and increase parallelism for full-scale quantum code executing up to a trillion quantum gate operations.

References

[1]
P. Aliferis and A. Cross. Subsystem fault tolerance with the Bacon- Shor code. arXiv preprint quant-ph/0610063, 2006.
[2]
A. Ambainis, A. M. Childs, B. W. Reichardt, R. Spalek, and S. Zhang. Any AND-OR formula of size N can be evaluated in time N1=2+o(1) on a quantum computer. In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS '07. IEEE Computer Society, 2007. ISBN 0-7695-3010-9.
[3]
B. Blinov, D. Moehring, L.-M. Duan, and C. Monroe. Observation of entanglement between a single trapped atom and a single photon. Nature, 428(6979):153--157, 2004.
[4]
S. Cavallar, B. Dodson, A. Lenstra, W. Lioen, P. Montgomery, B. Murphy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muffett, C. Putnam, and P. Zimmermann. Factorization of a 512--bit RSA modulus. In B. Preneel, editor, Advances in Cryptology -- EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 1--18. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-67517-4.
[5]
E. Chi, S. A. Lyon, and M. Martonosi. Tailoring quantum architectures to implementation style: a quantum computer for mobile and persistent qubits. In Proceedings of the 34th Annual International Symposium on Computer Architecture, ISCA '07. ACM, 2007. ISBN 978-1-59593-706-3.
[6]
J. Chiaverini, D. Leibfried, T. Schaetz, M. Barrett, R. Blakestad, J. Britton, W. Itano, J. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum error correction. Nature, 432 (7017):602--605, 2004.
[7]
A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann, and D. A. Spielman. Exponential algorithmic speedup by a quantum walk. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC '03. ACM, 2003. ISBN 1-58113-674-9.
[8]
I. Chuang. Quantum architectures: qasm2circ. URL http://www.media.mit.edu/quanta/qasm2circ/.
[9]
J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 74:4091--4094, May 1995.
[10]
D. Copsey, M. Oskin, F. Impens, T. Metodiev, A. Cross, F. T. Chong, I. L. Chuang, and J. Kubiatowicz. Toward a scalable, silicon-based quantum computing architecture. Selected Topics in Quantum Electronics, IEEE Journal of, 9(6):1552--1569, 2003.
[11]
D. P. L. A. Craik, N. M. Linke, T. P. Harty, C. J. Ballance, D. M. Lucas, A. M. Steane, and D. T. C. Allcock. Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap, August 2013. URL http://arxiv.org/pdf/1308.2078.pdf.
[12]
D. P. DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48(9-11):771--783, 2000. ISSN 1521-3978.
[13]
J. García-Ripoll, P. Zoller, and J. Cirac. Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett, 91(15):157901, 2003.
[14]
M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz, M. Marino, N. Ranganathan, B. Robatmili, A. Smith, J. Burrill, S. W. Keckler, D. Burger, and K. S. McKinley. An evaluation of the TRIPS computer system. In Proceedings of the Fourteenth International Conference on Architectural Support for Programming Languages and Operating Systems. ACM, Mar. 2009.
[15]
L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC '96, 1996. ISBN 0-89791-785-5.
[16]
S. Hallgren. Fast quantum algorithms for computing the unit group and class group of a number field. In H. N. Gabow and R. Fagin, editors, STOC. ACM, 2005. ISBN 1-58113-960-8.
[17]
C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter. Surface code quantum computing by lattice surgery. New Journal of Physics, 14 (12):123011, 2012.
[18]
N. Isailovic. An investigation into the realities of a quantum datapath. PhD thesis, University of California, Berkeley, 2010.
[19]
N. Isailovic, M. Whitney, Y. Patel, and J. Kubiatowicz. Running a quantum circuit at the speed of data. In ACM SIGARCH Computer Architecture News, volume 36, pages 177--188. IEEE Computer Society, 2008.
[20]
A. JavadiAbhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black, F. Chong, M. Martonosi, M. Suchara, K. Brown, M. Pedram, and T. Brun. Scaffold: Quantum programming language. Technical report, Princeton University, 2012.
[21]
A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. Chong, and M. Martonosi. ScaffCC: A framework for compilation and analysis of quantum computing programs. ACM International Conference on Computing Frontiers (CF 2014), May 2014.
[22]
M. Johanning, A. Braun, N. Timoney, V. Elman, W. Neuhauser, and C. Wunderlich. Individual addressing of trapped ions and coupling of motional and spin states using RF radiation. Phys. Rev. Lett., 102: 073004, Feb 2009.
[23]
N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and Y. Yamamoto. Layered architecture for quantum computing. Physical Review X, 2(3):031007, 2012.
[24]
J. Kim, S. Pau, Z. Ma, H. McLellan, J. Gates, A. Kornblit, R. E. Slusher, R. M. Jopson, I. Kang, and M. Dinu. System design for large- scale ion trap quantum information processor. Quantum Information & Computation, 5(7):515--537, 2005.
[25]
V. Kliuchnikov, D. Maslov, and M. Mosca. SQCT: Single qubit circuit toolkit. URL https://code.google.com/p/sqct/.
[26]
C. Lattner and V. Adve. LLVM: a compilation framework for life-long program analysis and transformation. In Code Generation and Optimization, 2004. CGO 2004. International Symposium on, pages 75--86, 2004.
[27]
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, B. J. WM Itano, C. Langer, and D. T Rosenband. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 422(6930):412--415, 2003.
[28]
F. Magniez, M. Santha, and M. Szegedy. Quantum algorithms for the triangle problem. In Proceedings of the Sixteenth annual ACM- SIAM Symposium on Discrete Algorithms, SODA '05, pages 1109--1117, 2005. ISBN 0-89871-585-7.
[29]
T. Metodi, D. Thaker, A. Cross, F. T. Chong, and I. L. Chuang. Scheduling physical operations in a quantum information processor. Proceedings for the SPIE Defense & Security symposium, Orlando, FL, April, 2006.
[30]
T. S. Metodi, D. D. Thaker, and A. W. Cross. A quantum logic array microarchitecture: Scalable quantum data movement and computation. In MICRO, pages 305--318. IEEE Computer Society, 2005. ISBN 0-7695-2440-0.
[31]
C. Monroe, D. Meekhof, B. King, W. Itano, and D. Wineland. Demonstration of a fundamental quantum logic gate. Physical Review Letters, 75(25):4714, 1995.
[32]
M. Mosca. Quantum algorithms. In R. A. Meyers, editor, Encyclopedia of Complexity and Systems Science, pages 7088--7118. Springer New York, 2009. ISBN 978-0-387-75888-6.
[33]
M. A. Nielsen and I. L. Chuang. Quantum computation and quantum information. Cambridge university press, 2010.
[34]
N. I. of Standards and Technology. FIPS PUB 180-4: Secure Hash Standard (SHS). U.S. Department of Commerce, 2012.
[35]
M. Oskin, F. Chong, and I. Chuang. A practical architecture for reliable quantum computers. Computer, 35(1):79--87, 2002. ISSN 0018-9162.
[36]
C. Ospelkaus, U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfried, and D. J. Wineland. Microwave quantum logic gates for trapped ions. Nature, 476:181--184, 2011.
[37]
M. Riebe, H. Haffner, C. Roos, W. Hansel, J. Benhelm, G. Lancaster, T. Korber, C. Becher, F. Schmidt-Kaler, and D. James. Deterministic quantum teleportation with atoms. Nature, 429(6993):734--737, 2004.
[38]
F. Schmidt-Kaler, H. Haffner, M. Riebe, S. Gulde, G. P. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt. Realization of the Cirac--Zoller controlled-NOT quantum gate. Nature, 422 (6930):408--411, 2003.
[39]
E. Schuchman and T. N. Vijaykumar. A program transformation and architecture support for quantum uncomputation. SIGARCH Comput. Archit. News, 34(5):252--263, Oct. 2006. ISSN 0163-5964.
[40]
C. M. Shappert, J. T. Merrill, K. R. Brown, J. M. Amini, C. Volin, S. C. Doret, H. Hayden, C.-S. Pai, and A. W. Harter. Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation. New Journal of Physics, 15(083053), 2013.
[41]
P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 124--134. IEEE, 1994.
[42]
A. Steane. Error correcting codes in quantum theory. Physical Review Letters, 77(5):793--797, 1996.
[43]
A. M. Steane. Active stabilization, quantum computation, and quantum state synthesis. Phys. Rev. Lett., 78:2252--2255, Mar 1997.
[44]
K. Svore, A. Aho, A. Cross, I. Chuang, and I. Markov. A layered software architecture for quantum computing design tools. Computer, 39(1):74--83, 2006. ISSN 0018-9162.
[45]
S. Swanson, A. Schwerin, M. Mercaldi, A. Petersen, A. Putnam, K. Michelson, M. Oskin, and S. J. Eggers. The WaveScalar architecture. ACM Trans. Comput. Syst., 25(2):4:1--4:54, May 2007. ISSN 0734-2071.
[46]
M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald, H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Architecture for ILP and Streams. In Proceedings of the 31st Annual International Symposium on Computer Architecture, ISCA '04, pages 2--. IEEE Computer Society, 2004. ISBN 0-7695-2143-6.
[47]
D. D. Thaker, T. S. Metodi, A. W. Cross, I. L. Chuang, and F. T. Chong. Quantum memory hierarchies: Efficient designs to match available parallelism in quantum computing. In ISCA, pages 378--390. IEEE Computer Society, 2006. ISBN 0-7695-2608-X.
[48]
J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure Hamiltonians using quantum computers. Molecular Physics, 109(5):735, 2010.
[49]
M. G. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz. A fault tolerant, area efficient architecture for shor's factoring algorithm. In Proceedings of the 36th annual international symposium on Computer architecture, ISCA '09, pages 383--394, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-526-0.
[50]
D. Wineland, C. Monroe, W. Itano, B. King, D. Leibfried, D. Meekhof, C. Myatt, and C. Wood. Experimental primer on the trapped ion quantum computer. Spectroscopy, 7:8, 1998.
[51]
T. Yang and A. Gerasoulis. PYRROS: static task scheduling and code generation for message passing multiprocessors. In Proceedings of the 6th ACM International Conference on Supercomputing, pages 428--437, 1992.
[52]
T. Yang and A. Gerasoulis. List scheduling with and without communication delays. Parallel Comput., 19(12):1321--1344, Dec. 1993. ISSN 0167-8191.

Cited By

View all
  • (2021)Software tools for quantum control: improving quantum computer performance through noise and error suppressionQuantum Science and Technology10.1088/2058-9565/abdca66:4(044011)Online publication date: 30-Sep-2021
  • (2020)Quantum Computer Systems: Research for Noisy Intermediate-Scale Quantum ComputersSynthesis Lectures on Computer Architecture10.2200/S01014ED1V01Y202005CAC05115:2(1-227)Online publication date: 16-Jun-2020
  • (2017)REVS: A Tool for Space-Optimized Reversible Circuit SynthesisReversible Computation10.1007/978-3-319-59936-6_7(90-101)Online publication date: 25-May-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGPLAN Notices
ACM SIGPLAN Notices  Volume 50, Issue 4
ASPLOS '15
April 2015
676 pages
ISSN:0362-1340
EISSN:1558-1160
DOI:10.1145/2775054
  • Editor:
  • Andy Gill
Issue’s Table of Contents
  • cover image ACM Conferences
    ASPLOS '15: Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems
    March 2015
    720 pages
    ISBN:9781450328357
    DOI:10.1145/2694344
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 March 2015
Published in SIGPLAN Volume 50, Issue 4

Check for updates

Author Tags

  1. cached memories
  2. design languages
  3. performance metrics

Qualifiers

  • Research-article

Funding Sources

  • NSF

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)70
  • Downloads (Last 6 weeks)5
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Software tools for quantum control: improving quantum computer performance through noise and error suppressionQuantum Science and Technology10.1088/2058-9565/abdca66:4(044011)Online publication date: 30-Sep-2021
  • (2020)Quantum Computer Systems: Research for Noisy Intermediate-Scale Quantum ComputersSynthesis Lectures on Computer Architecture10.2200/S01014ED1V01Y202005CAC05115:2(1-227)Online publication date: 16-Jun-2020
  • (2017)REVS: A Tool for Space-Optimized Reversible Circuit SynthesisReversible Computation10.1007/978-3-319-59936-6_7(90-101)Online publication date: 25-May-2017
  • (2023)The Imitation Game: Leveraging CopyCats for Robust Native Gate Selection in NISQ Programs2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)10.1109/HPCA56546.2023.10071025(787-801)Online publication date: Feb-2023
  • (2022)Quantum Software Components and Platforms: Overview and Quality AssessmentACM Computing Surveys10.1145/354867955:8(1-31)Online publication date: 23-Dec-2022
  • (2022)DigiQ: A Scalable Digital Controller for Quantum Computers Using SFQ Logic2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)10.1109/HPCA53966.2022.00037(400-414)Online publication date: Apr-2022
  • (2022)Formal constraint-based compilation for noisy intermediate-scale quantum systemsMicroprocessors & Microsystems10.1016/j.micpro.2019.02.00566:C(102-112)Online publication date: 19-Apr-2022
  • (2021)Application-Motivated, Holistic Benchmarking of a Full Quantum Computing StackQuantum10.22331/q-2021-03-22-4155(415)Online publication date: 22-Mar-2021
  • (2021)Scaling of multi-core quantum architecturesProceedings of the 18th ACM International Conference on Computing Frontiers10.1145/3457388.3458674(144-151)Online publication date: 11-May-2021
  • (2021)CutQC: using small Quantum computers for large Quantum circuit evaluationsProceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems10.1145/3445814.3446758(473-486)Online publication date: 19-Apr-2021
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media