Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

MyAdChoices: Bringing Transparency and Control to Online Advertising

Published: 10 March 2017 Publication History

Abstract

The intrusiveness and the increasing invasiveness of online advertising have, in the last few years, raised serious concerns regarding user privacy and Web usability. As a reaction to these concerns, we have witnessed the emergence of a myriad of ad-blocking and antitracking tools, whose aim is to return control to users over advertising. The problem with these technologies, however, is that they are extremely limited and radical in their approach: users can only choose either to block or allow all ads. With around 200 million people regularly using these tools, the economic model of the Web—in which users get content free in return for allowing advertisers to show them ads—is at serious peril. In this article, we propose a smart Web technology that aims at bringing transparency to online advertising, so that users can make an informed and equitable decision regarding ad blocking. The proposed technology is implemented as a Web-browser extension and enables users to exert fine-grained control over advertising, thus providing them with certain guarantees in terms of privacy and browsing experience, while preserving the Internet economic model. Experimental results in a real environment demonstrate the suitability and feasibility of our approach, and provide preliminary findings on behavioral targeting from real user browsing profiles.

References

[1]
Adblock Plus. Retrieved from https://adblockplus.org.
[2]
Clickstream or clickpath analysis. Retrieved from http://www.opentracker.net/article/clickstream-or-clickpath-analysis. Accessed on 2015-03-27. [Online].
[3]
COIN-OR Interior Point OPTimizer. Retrieved from https://projects.coin-or.org/Ipopt.
[4]
COIN-OR Linear Programming Solver. Retrieved from https://projects.coin-or.org/Clp.
[5]
Consumer Opt-out. Technical Report. Network Advertising Initiative. Retrieved from http://www.networkadvertising.org/choices. Accessed on 2015-03-19.
[6]
Disconnect. Retrieved from https://disconnect.me/.
[7]
Eclipse Public License-Version 1.0. Retrieved from https://www.eclipse.org/legal/epl-v10.html.
[8]
Ghostery. Retrieved from https://www.ghostery.com.
[9]
GNU Linear Programming Kit, (GLPK). Retrieved from http://www.gnu.org/software/glpk.
[10]
IAB Quality Assurance Guidelines (QAG) Taxonomy. Retrieved from http://www.iab.com/guidelines/iab-quality-assurance-guidelines-qag-taxonomy/. Accessed on 2015-09-11
[11]
Lightbeam. Retrieved from https://www.mozilla.org/en-US/lightbeam/.
[12]
The Official EasyList Website. Retrieved from https://easylist.adblockplus.org. Accessed on 2015-10-22.
[13]
Privacy Badger. https://www.eff.org/es/node/73969.
[14]
Real-Time Bidding Protocol-Cookie Matching. Retrieved from https://developers.google.com/ad-exchange/rtb/cookie-guide. Accessed on 2015-10-07.
[15]
Real-Time Bidding Protocol - Processing the Request. Retrieved from https://developers.google.com/ad-exchange/rtb/request-guide. Accessed on 2015-10-07.
[16]
Cisco 2009. Cisco Service Control Online Advertising Solution Guide. Technical Report. Cisco Syst.
[17]
2010. Evercookie-virtually irrevocable persistent cookies. Retrieved from http://samy.pl/evercookie. Oct. 2010.
[18]
2010. Topline U.S. Web Data for March 2010. Technical Report. Retrieved from http://www.nielsen.com/us/en/insights/news/2010/nielsen-provides-topline-u-s-web-data-for-march-2010.html.
[19]
2011. Adblock Plus User Survey Results, Part 3. Technical Report. Eyeo. Retrieved from https://adblockplus.org/blog/adblock-plus-user-survey-results-part-3.
[20]
2012. The State of Online Advertising. Technical Report. Adobe. Retrieved from http://www.adobe.com/aboutadobe/pressroom/pdfs/Adobe_State_of_Online_Adve rtising_Study.pdf. Accessed on 2015-09-11.
[21]
2014. Firefox Interest Dashboard. Retrieved from https://www.mozilla.org/en-US/firefox/interest-dashboard/.
[22]
2014. US Programmatic Ad Spend Tops $10 Billion This Year, to Double by 2016. Technical Report. eMarketer. Retrieved from http://www.emarketer.com/Article/US-Programmatic-Ad-Spend-Tops-10-Billion-This-Year-Double-by-2016/1011312
[23]
2015. The Cost of Ad Blocking. Res. rep. PageFair.
[24]
2015. Google DoubleClick Ad Exchange (AdX) Buyer Program Guidelines. Retrieved from http://www.google.com/doubleclick/adxbuyer/guidelines.html.
[25]
2015. Tracking Preference Expression (DNT). Technical Report. Retrieved from http://www.w3.org/TR/tracking-dnt/.
[26]
G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz. 2014. The web never forgets: Persistent tracking mechanisms in the wild. In Proc. ACM Conf. Comput., Commun. Secur. (CCS). Washington, DC, 674--689.
[27]
K. G. Allen. 2014. Search Marketing Tops Online Retail Customer Acquisition Tactics. Technical Report. NFR. Retrieved from https://nrf.com/media/press-releases/shoporgforrester-search-marketing-tops-online-retail-customer-acquisition.
[28]
M. Aly, A. Hatch, V. Josifovski, and V. K. Narayanan. 2012. Web-scale user modeling for targeting. In Proc. Int. WWW Conf. ACM, 3--12.
[29]
AOL 2006. AOL Search Data Scandal. Retrieved from http://en.wikipedia.org/wiki/AOL_search_data_scandal.
[30]
M. Arment. 2015. The ethics of modern web ad-blocking. Retrieved from (Aug. 2015). http://www.marco.org/2015/08/11/ad-blocking-ethics.
[31]
P. Barford, I. Canadi, D. Krushevskaja, Q. Ma, and S. Muthukrishnan. 2014. Adscape: Harvesting and analyzing online display ads. In Proc. ACM Int. WWW Conf. ACM, 597--608.
[32]
S. J. Benson, Y. Ye, and X. Zhang. 2000. Solving large-scale sparse semidefinite programs for combinatorial optimization. (SIAM) J. Optim. 10, 2 (2000), 443--461.
[33]
L. Bentivogli, P. Forner, B. Magnini, and E. Pianta. 2004. Revising WordNet domains hierarchy: Semantics, coverage, and balancing. In Proc. PostCOLING Workshop Multiling. Ling. Resources. 101--108.
[34]
M. Berkelaar, K. Eikland, and P. Notebaert. 2004. Open Source (Mixed Integer) Linear Programming System. Retrieved from http://lpsolve.sourceforge.net.
[35]
B. Borchers. 1999. CSDP, a C library for semidefinite programming. Optim. Method, Softw. 11, 1 (1999), 613--623.
[36]
S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press, Cambridge, UK.
[37]
J. Butler. 2010. Case Study: How Display Ad Remarketing Works in Travel. Technical Report. Tnooz. Retrieved from http://www.tnooz.com/article/case-study-how-display-ad-remarketing-works-in-travel/.
[38]
J. M. Carrascosa, J. Mikians, R. Cuevas, V. Erramilli, and N. Laoutaris. 2014. Understanding interest-based behavioural targeted advertising. In arXiv: 1411.5281v1.
[39]
J. M. Carrascosa, J. Mikians, R. Cuevas, V. Erramilli, and N. Laoutaris. 2015. I always feel like somebody’s watching me. Measuring online behavioural advertising. In Proc. ACM Int. Emerg. Netw. Experiments, Technol. (CoNEXT).
[40]
R. Cookson. 2015. Google, Microsoft and Amazon pay to get around ad blocking tool. Retrieved from http://www.ft.com/cms/s/0/80a8ce54-a61d-11e4-9bd3-00144feab7de.html.
[41]
T. M. Cover and J. A. Thomas. 2006. Elements of Information Theory (2nd ed.). Wiley, New York.
[42]
J. Currie and D. I. Wilson. 2012. OPTI: Lowering the barrier between open source optimizers and the industrial MATLAB user. In Proc. Found. Comput.-Aided Process Oper.
[43]
A. Datta, M. C. Tschantz, and A. Datta. 2015. Automated experiments on ad privacy settings. In Proc. Int. Symp. Priv. Enhanc. Technol. (PETS).
[44]
J. Daudé, L. Padró, and German Rigau. 2003. Validation and tuning of wordnet mapping techniques. Proc. Int. Conf. Recent Adv. Nat. Lang. Process. (RANLP) (Sept. 2003).
[45]
W. Davis. 2015. FTC’s Julie Brill Tells Ad Tech Companies To Improve Privacy Protections. Retrieved from http://www.mediapost.com/publications/article/259210/ftcs-julie-brill-tells-ad-tech-companies-to-impro.html.
[46]
S. Englehardt. 2014. The hidden perils of cookie syncing. Retrieved from https://freedom-to-tinker.com/blog/englehardt/the-hidden-perils-of-cookie-syncing/.
[47]
E. Ferrari and B. Thuraisingham. 2000. Artech House, Inc., Chapter Secure Database Systems, 353--403.
[48]
Floodwatch. Floodwatch. Retrieved from https://floodwatch.o-c-r.org/.
[49]
J. Q. Freed. 2012. Hoteliers Rake in Returns Through Retargeting. Technical Report. Hotel News Now. Retrieved from http://www.hotelnewsnow.com/Article/7710/Hoteliers-rake-in-returns-through-retargeting.
[50]
S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli. 2007. User profiles for personalized information access, in The Adaptive Web. Springer-Verlag, 54--89.
[51]
E. M. Gertz and S. J. Wright. 2003. Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29 (2003), 58--81.
[52]
A. Gonzalez-Agirre, E. Laparra, and G. Rigau. 2012. Multilingual central repository version 3.0: Upgrading a very large lexical knowledge base. In Proc. Global WordNet Conf.
[53]
S. Guha, B. Cheng, and P. Francis. 2010. Challenges in measuring online advertising systems. In Proc. ACM Internet Meas. Conf. (IMC).
[54]
M. Gundlach. AdBlock. Retrieved from https://getadblock.com/.
[55]
B. J. Jansen. 2007. Click fraud. IEEE Comput. 40, 7 (July 2007), 85--86.
[56]
E. T. Jaynes. 1957. Information theory and statistical mechanics II. Phys. Review Ser. II 108, 2 (1957), 171--190.
[57]
E. T. Jaynes. 1982. On the rationale of maximum-entropy methods. Proc. IEEE 70, 9 (Sept. 1982), 939--952.
[58]
S. G. Johnson. NLopt nonlinear-optimization package. Retrieved from http://ab-initio.mit.edu/nlopt.
[59]
A. Kae, K. Kan, V. K. Narayanan, and D. Yankov. 2011. Categorization of display ads using image and landing page features. In Proc. ICDM Workshop Large-Scale Data Min.: Theory, Appl. ACM, 1--8. http://doi.acm.org/10.1145/2002945.2002946.
[60]
T. Kawaja. 2015. Display LUMAscape. Retrieved from http://www.lumapartners.com/lumascapes/display-ad-tech-lumascape.
[61]
P. Kouvelis and G. Yu. 1996. Robust Discrete Optimization and Its Applications (1st ed.). Springer-Verlag.
[62]
M. Lecuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn, A. Chaintreau, and R. Geambasu. 2014. XRay: Enhancing the web’s transparency with differential correlation. In Proc. Conf. USENIX Secur. Symp.
[63]
M. Lecuyer, R. Spahn, Y. Spiliopoulos, A. Chaintreau, R. Geambasu, and D. Hsu. 2015. Sunlight: Finegrained targeting detection at scale with statistical confidence. In Proc. ACM Conf. Comput., Commun. Secur. (CCS).
[64]
B. C. Levy. 2008. Principles of Signal Detection and Parameter Estimation (1st ed.). Springer-Verlag.
[65]
B. Liu, A. Sheth, U. Weinsberg, J. Chandrashekar, and R. Govindan. 2013. AdReveal: Improving transparency into online targeted advertising. In Proc. Hot Topics in Netw. ACM, 121--127.
[66]
R. Lougee-Heimer. 2003. The common optimization INterface for operations research: Promoting open-source software in the operations research community. IMB J. Res. Develop. 47, 1 (Jan. 2003), 57--66.
[67]
B. Magnini and G. Cavaglià. 2000. Integrating subject field codes into WordNet. In Proc. Lang. Resource, Evaluation (LREC). 1413--1418.
[68]
C. D. Manning and H. Schütze. 1999. Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, MA.
[69]
B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G. Stum. 2009. Evaluating similarity measures for emergent semantics of social tagging. In Proc. Int. WWW Conf. ACM, 641--650.
[70]
G. Marvin. 2013. Consumers Now Notice Retargeted Ads. Technical Report. Marketing Land. Retrieved from http://marketingland.com/3-out-4-consumers-notice-retargeted-ads-67813.
[71]
W. Melicher, M. Sharif, J. Tan, L. Bauer, M. Christodorescu, and P. G. Leon. 2016. (Do not) track me sometimes: Users’ contextual preferences for web tracking. In Proc. Int. Symp. Priv. Enhanc. Technol. (PETS), Lecture Notes in Computer Science. Springer-Verlag, 1--20.
[72]
G. A. Miller. 1995. WordNet: A lexical database for english. Commun. ACM 38, 11 (1995), 39--41.
[73]
T. Morey, T. Forbath, and A. Schoop. 2015. Customer Data: Designing for Transparency and Trust. Internet draft. Retrieved from https://hbr.org/2015/05/customer-data-designing-for-transparency-and-trust.
[74]
K. Mowery and H. Shacham. 2012. Pixel perfect: Fingerprinting canvas in HTML5. In Proc. IEEE Web 2.0 Workshop Secur., Priv. (W2SP). IEEE Comput. Soc.
[75]
J. Naughton. 2015. The rise of ad-blocking could herald the end of the free internet. Retrieved from http://www.theguardian.com/commentisfree/2015/sep/27/ad-blocking-herald-end-of-free-internet-ios9-apple.
[76]
T.-D. Nguyen. 2009. Robust Estimation, Regression and Ranking with Applications in Portfolio Optimization. Ph.D. dissertation. MIT.
[77]
L. Olejnik. 2015. Measuring the Privacy Risks and Value of Web Tracking. Ph.D. dissertation.
[78]
L. Olejnik, T. Minh-Dung, and C. Castelluccia. 2014. Selling off privacy at auction. In Proc. Symp. Netw. Distrib. Syst. Secur. (SNDSS). Internet. Soc.
[79]
S. Pandey, M. Aly, A. Bagherjeiran, A. Hatch, P. Ciccolo, A. Ratnaparkhi, and M. Zinkevich. 2011. Learning to target: What works for behavioral targeting. In Proc. Int. Conf. Inform., Knowl. Manage. (CIKM). ACM, 1805--1814.
[80]
J. Parra-Arnau, D. Rebollo-Monedero, and J. Forné. 2014. Measuring the privacy of user profiles in personalized information systems. Future Gen. Comput. Syst. (FGCS), Special Issue Data, Knowl. Eng. 33 (April 2014), 53--63. http://dx.doi.org/10.1016/j.future.2013.01.001
[81]
S. Puglisi, D. Rebollo-Monedero, and J. Forné. 2015. You never surf alone. Ubiquitous tracking of users’ browsing habits. In Proc. Int. Workshop Data Priv. Manage. (DPM), Lecture Notes in Computer Science Vol. 9481.
[82]
K. Purcell, J. Brenner, and Lee Rainie. 2012. Search Engine Use 2012. Res. rep. Pew Internet, Amer. Life Project.
[83]
D. Rebollo-Monedero, J. Parra-Arnau, and J. Forné. 2011. An information-theoretic privacy criterion for query forgery in information retrieval. In Proc. Int. Conf. Secur. Technol. (SecTech) (Commun. Comput., Inform. Sci. (CCIS)), Vol. 259. Springer-Verlag, 146--154.
[84]
D. Rogers. 2015. How Business Can Gain Consumers’ Trust Around Data. Retrieved from http://www.forbes.com/sites/davidrogers/2015/11/02/how-business-can-gain-consumers-trust-around-data/.
[85]
G. Salton, A. Wong, and C. S. Yang. 1975. A vector space model for automatic indexing. Commun. ACM 18, 11 (1975), 613--620.
[86]
P. Sayer. 2015. Adblock extension begins whitelisting “acceptable ads.” Retrieved from http://www.pcworld.com/article/2988838.
[87]
M. J. Schervish. 1995. Theory of Statistics. Springer-Verlag, New York.
[88]
M. Smith. 2014. Targeted: How Technology Is Revolutionizing Advertising and the Way Companies Reach Consumers (1st ed.). AMACOM, New York.
[89]
A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle. 2010. Flash cookies and privacy. In Proc. AAAI Spring Symp. Intell. Inform. Priv. Manage. Assoc. Adv. Artif. Intell.
[90]
S. Thielman. 2015. Rise of ad-blockers shows advertising does not understand mobile, say experts. Retrieved from http://www.theguardian.com/technology/2015/oct/03/ad-blockers-advertising-mobile-apple.
[91]
V. Toubiana. 2007. SquiggleSR. Retrieved from www.squigglesr.com.
[92]
V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. 2010. Adnostic: Privacy preserving targeted advertising. In Proc. Symp. Netw. Distrib. Syst. Secur. (SNDSS). 1--21.
[93]
M. M. Tsang, S. C. Ho, and T. P. Liang. 2004. Consumer attitudes toward mobile advertising: An empirical study. Int. J. Electron. Commer. 8, 3 (2004), 65--78.
[94]
A. Wächter and L. T. Biegler. 2006. On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 1 (2006), 25--57.
[95]
V. Woollaston. 2015. Facebook slammed after advertising funeral directors to a cancer patient. Retrieved from http://www.dailymail.co.uk/sciencetech/article-2989768.
[96]
J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen. 2009. How much can behavioral targeting help online advertising? In Proc. Int. WWW Conf. ACM, 261--270.
[97]
K. Yang, Y. Wu, J. Huang, X. Wang, and S. Verdu. 2008. Distributed robust optimization for communication networks. In Proc. Joint Conf. IEEE Comput., Commun. Soc. (INFOCOM).
[98]
YourOnlineChoices. YourOnlineChoices. Retrieved from http://www.youronlinechoices.com/.
[99]
S. Yuan, A. Z. Abidin, M. Sloan, and J. Wang. 2012. Internet advertising: An interplay among advertisers, online publishers, ad exchanges and web users. arXiv: 1206.1754 .
[100]
C. Zhu, R. H. Byrd, and J. Nocedal. 2007. L-BFGS-B: Algorithm 778: L-BFGS-B FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23, 4 (2007), 550--560.
[101]
A. M. Zoubir, V. Koivunen, and Y. Chakhchoukh M. Muma. 2012. Robust estimation in signal processing: A tutorial-style treatment of fundamental concepts. IEEE Signal Process. Mag. 29, 4 (July 2012), 61--80.

Cited By

View all
  • (2025)Privacy protection against user profiling through optimal data generalizationComputers & Security10.1016/j.cose.2024.104178148(104178)Online publication date: Jan-2025
  • (2024)The OPAD-perception framework: measuring perceptions of online personalized advertisingInternet Research10.1108/INTR-01-2023-0078Online publication date: 11-Nov-2024
  • (2023)Collaborative Ad Transparency: Promises and Limitations2023 IEEE Symposium on Security and Privacy (SP)10.1109/SP46215.2023.10179448(2639-2657)Online publication date: May-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on the Web
ACM Transactions on the Web  Volume 11, Issue 1
February 2017
203 pages
ISSN:1559-1131
EISSN:1559-114X
DOI:10.1145/3062397
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 March 2017
Accepted: 01 November 2016
Revised: 01 October 2016
Received: 01 February 2016
Published in TWEB Volume 11, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Online advertising
  2. ad-blocking
  3. behavioral targeting
  4. user profiling
  5. web tracking
  6. web transparency

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Inria Project Lab CAPPRIS
  • Juan de la Cierva postdoctoral fellowship
  • Spanish Ministry of Economy and Competitiveness

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)77
  • Downloads (Last 6 weeks)10
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Privacy protection against user profiling through optimal data generalizationComputers & Security10.1016/j.cose.2024.104178148(104178)Online publication date: Jan-2025
  • (2024)The OPAD-perception framework: measuring perceptions of online personalized advertisingInternet Research10.1108/INTR-01-2023-0078Online publication date: 11-Nov-2024
  • (2023)Collaborative Ad Transparency: Promises and Limitations2023 IEEE Symposium on Security and Privacy (SP)10.1109/SP46215.2023.10179448(2639-2657)Online publication date: May-2023
  • (2022)Advertising in the Age of Ad-BlockersMoving Businesses Online and Embracing E-Commerce10.4018/978-1-7998-8294-7.ch010(199-231)Online publication date: 2022
  • (2022)On Natural Language User Profiles for Transparent and Scrutable RecommendationProceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3477495.3531873(2863-2874)Online publication date: 6-Jul-2022
  • (2022)Consumption of marketer-generated content: consumers as curators of marketing messages that they consume on social mediaEuropean Journal of Marketing10.1108/EJM-09-2020-069556:12(3545-3567)Online publication date: 19-Oct-2022
  • (2021)Reaching Your Customers Using Facebook and Google Dynamic AdsResearch Anthology on Strategies for Using Social Media as a Service and Tool in Business10.4018/978-1-7998-9020-1.ch030(582-599)Online publication date: 2021
  • (2021)Blockchain-Based Smart Advertising Network With Privacy-Preserving AccountabilityIEEE Transactions on Network Science and Engineering10.1109/TNSE.2020.30277968:3(2118-2130)Online publication date: 1-Jul-2021
  • (2021)Boosting people’s ability to detect microtargeted advertisingScientific Reports10.1038/s41598-021-94796-z11:1Online publication date: 30-Jul-2021
  • (2021)Privacy and Cost Concerns in Online Advertising—Literature Review and AnalysisDevelopments in Information & Knowledge Management for Business Applications10.1007/978-3-030-77916-0_17(529-568)Online publication date: 16-Aug-2021
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media