Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3018661.3018680acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article
Public Access

PRED: Periodic Region Detection for Mobility Modeling of Social Media Users

Published: 02 February 2017 Publication History

Abstract

The availability of massive geo-annotated social media data sheds light on studying human mobility patterns. Among them, periodic pattern, \ie an individual visiting a geographical region with some specific time interval, has been recognized as one of the most important. Mining periodic patterns has a variety of applications, such as location prediction, anomaly detection, and location- and time-aware recommendation. However, it is a challenging task: the regions of a person and the periods of each region are both unknown. The interdependency between them makes the task even harder. Hence, existing methods are far from satisfactory for detecting periodic patterns from the low-sampling and noisy social media data.
We propose a Bayesian non-parametric model, named \textbf{P}eriodic \textbf{RE}gion \textbf{D}etection (PRED), to discover periodic mobility patterns by jointly modeling the geographical and temporal information. Our method differs from previous studies in that it is non-parametric and thus does not require priori knowledge about an individual's mobility (\eg number of regions, period length, region size). Meanwhile, it models the time gap between two consecutive records rather than the exact visit time, making it less sensitive to data noise. Extensive experimental results on both synthetic and real-world datasets show that PRED outperforms the state-of-the-art methods significantly in four tasks: periodic region discovery, outlier movement finding, period detection, and location prediction.

References

[1]
C. Berberidis, W. G. Aref, M. Atallah, I. Vlahavas, A. K. Elmagarmid, et al. Multiple and partial periodicity mining in time series databases. In ECAI, volume 2, pages 370--374, 2002.
[2]
D. Brockmann, L. Hufnagel, and T. Geisel. The scaling laws of human travel. Nature, 439(7075):462--5, 2006.
[3]
M. Chen, Y. Liu, and X. Yu. Nlpmm: a next location predictor with markov modeling. In PAKDD, pages 186--197. Springer, 2014.
[4]
E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In KDD, pages 1082--1090, 2011.
[5]
B. Deb and P. Basu. Discovering latent semantic structure in human mobility traces. In Wireless Sensor Networks, pages 84--103. Springer, 2015.
[6]
Y. Ding and X. Li. Time weight collaborative filtering. In CIKM, pages 485--492, 2005.
[7]
M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Periodicity detection in time series databases. TKDE, 17(7):875--887, 2005.
[8]
M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Warp: time warping for periodicity detection. In ICDM, pages 138--145, 2005.
[9]
M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Stagger: Periodicity mining of data streams using expanding sliding windows. In ICDM, pages 188--199, 2006.
[10]
S. Feng, X. Li, Y. Zeng, G. Cong, Y. M. Chee, and Q. Yuan. Personalized ranking metric embedding for next new poi recommendation. In IJCAI, 2015.
[11]
W. Feng, C. Zhang, W. Zhang, J. Han, J. Wang, C. Aggarwal, and J. Huang. STREAMCUBE: hierarchical spatio-temporal hashtag clustering for event exploration over the twitter stream. In ICDE, pages 1561--1572, 2015.
[12]
H. Gao, J. Tang, and H. Liu. Mobile location prediction in spatio-temporal context. In Nokia mobile data challenge workshop, 2012.
[13]
E. F. Glynn, J. Chen, and A. R. Mushegian. Detecting periodic patterns in unevenly spaced gene expression time series using lomb--scargle periodograms. Bioinformatics, 22(3):310--316, 2006.
[14]
M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi. Understanding individual human mobility patterns. Nature, 453(7196):779--782, 2008.
[15]
J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database. In ICDE, pages 106--115, 1999.
[16]
J. Han, W. Gong, and Y. Yin. Mining segment-wise periodic patterns in time-related databases. In KDD, pages 214--218, 1998.
[17]
L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsioutsiouliklis. Discovering geographical topics in the twitter stream. In WWW, pages 769--778, 2012.
[18]
B. Hu and M. Ester. Spatial topic modeling in online social media for location recommendation. In RecSys, pages 25--32, 2013.
[19]
S. Isaacman, R. Becker, R. Cáceres, M. Martonosi, J. Rowland, A. Varshavsky, and W. Willinger. Human mobility modeling at metropolitan scales. In MobiSys, pages 239--252, 2012.
[20]
M. Jiang, P. Cui, F. Wang, X. Xu, W. Zhu, and S. Yang. Fema: flexible evolutionary multi-faceted analysis for dynamic behavioral pattern discovery. In KDD, pages 1186--1195. ACM, 2014.
[21]
M. Jiang, C. Faloutsos, and J. Han. Catchtartan: Representing and summarizing dynamic multicontextual behaviors. In KDD. ACM, 2016.
[22]
H. Kamper. Gibbs sampling for fitting finite and infinite gaussian mixture models. 2013.
[23]
J. Klafter, M. F. Shlesinger, and G. Zumofen. Beyond brownian motion. Physics today, 49(2):33--39, 1996.
[24]
R. Kumar, M. Mahdian, B. Pang, A. Tomkins, and S. Vassilvitskii. Driven by food: Modeling geographic choice. In WSDM, pages 213--222, 2015.
[25]
V. B. Le, O. Mella, D. Fohr, et al. Speaker diarization using normalized cross likelihood ratio. In INTERSPEECH, volume 7, pages 1869--1872, 2007.
[26]
E. Levina and P. Bickel. The earth mover's distance is the mallows distance: Some insights from statistics. In ICCV, volume 2, pages 251--256, 2001.
[27]
Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining periodic behaviors for moving objects. In KDD, pages 1099--1108, 2010.
[28]
Z. Li, J. Wang, and J. Han. Mining event periodicity from incomplete observations. In KDD, pages 444--452, 2012.
[29]
D. Lian, C. Zhao, X. Xie, G. Sun, E. Chen, and Y. Rui. Geomf: joint geographical modeling and matrix factorization for point-of-interest recommendation. In KDD, pages 831--840, 2014.
[30]
Q. Liu, S. Wu, L. Wang, and T. Tan. Predicting the next location: A recurrent model with spatial and temporal contexts. In AAAI, 2016.
[31]
S. Ma and J. L. Hellerstein. Mining partially periodic event patterns with unknown periods. In ICDE, pages 205--214, 2001.
[32]
W. Mathew, R. Raposo, and B. Martins. Predicting future locations with hidden markov models. In UbiComp, pages 911--918, 2012.
[33]
J. McGee, J. Caverlee, and Z. Cheng. Location prediction in social media based on tie strength. In CIKM, pages 459--468, 2013.
[34]
A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti. Wherenext: a location predictor on trajectory pattern mining. In KDD, pages 637--646, 2009.
[35]
M. A. Nishi, C. F. Ahmed, M. Samiullah, and B.-S. Jeong. Effective periodic pattern mining in time series databases. Expert Systems with Applications, 40(8):3015--3027, 2013.
[36]
A. Noulas, S. Scellato, N. Lathia, and C. Mascolo. Mining user mobility features for next place prediction in location-based services. In ICDM, pages 1038--1043, 2012.
[37]
F. Rasheed, M. Alshalalfa, and R. Alhajj. Efficient periodicity mining in time series databases using suffix trees. TKDE, 23(1):79--94, 2011.
[38]
A. Sadilek, H. Kautz, and J. P. Bigham. Finding your friends and following them to where you are. In WSDM, pages 723--732, 2012.
[39]
C. Sheng, W. Hsu, and M. Li Lee. Mining dense periodic patterns in time series data. In ICDE, pages 115--115, 2006.
[40]
F. Simini, M. C. González, A. Maritan, and A.-L. Barabási. A universal model for mobility and migration patterns. Nature, 484(7392):96--100, 2012.
[41]
A. Tarasov, F. Kling, and A. Pozdnoukhov. Prediction of user location using the radiation model and social check-ins. In KDD Workshop on Urban Computing, page 8, 2013.
[42]
M. Vlachos, S. Y. Philip, and V. Castelli. On periodicity detection and structural periodic similarity. In SDM, volume 5, pages 449--460. SIAM, 2005.
[43]
W. Wang, J. Yang, and P. S. Yu. Meta-patterns: revealing hidden periodic patterns. In ICDM, pages 550--557, 2001.
[44]
Y. Wang, N. J. Yuan, D. Lian, L. Xu, X. Xie, E. Chen, and Y. Rui. Regularity and conformity: Location prediction using heterogeneous mobility data. In KDD, pages 1275--1284, 2015.
[45]
J. Yang, W. Wang, and P. S. Yu. Infominer: mining surprising periodic patterns. In KDD, pages 395--400, 2001.
[46]
J. Yang, W. Wang, and P. S. Yu. Infominer
[47]
: mining partial periodic patterns with gap penalties. In ICDM, pages 725--728, 2002.
[48]
K.-J. Yang, T.-P. Hong, Y.-M. Chen, and G.-C. Lan. Projection-based partial periodic pattern mining for event sequences. Expert Systems with Applications, 40(10):4232--4240, 2013.
[49]
J. Ye, Z. Zhu, and H. Cheng. What's your next move: User activity prediction in location-based social networks. In SDM. SIAM, 2013.
[50]
Z. Yin, L. Cao, J. Han, C. Zhai, and T. Huang. Geographical topic discovery and comparison. In WWW, pages 247--256, 2011.
[51]
Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Time-aware point-of-interest recommendation. In SIGIR, pages 363--372. ACM, 2013.
[52]
Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann. Who, where, when and what: discover spatio-temporal topics for twitter users. In KDD, pages 605--613, 2013.
[53]
Q. Yuan, G. Cong, and A. Sun. Graph-based point-of-interest recommendation with geographical and temporal influences. In CIKM, pages 659--668, 2014.
[54]
Q. Yuan, G. Cong, K. Zhao, Z. Ma, and A. Sun. Who, where, when, and what: A nonparametric bayesian approach to context-aware recommendation and search for twitter users. TOIS, 33(1):2, 2015.
[55]
C. Zhang, J. Han, L. Shou, J. Lu, and T. La Porta. Splitter: Mining fine-grained sequential patterns in semantic trajectories. VLDB Endowment, 7(9):769--780, 2014.
[56]
C. Zhang, K. Zhang, Q. Yuan, L. Zhang, T. Hanratty, and J. Han. Gmove: Group-level mobility modeling using geo-tagged social media. In KDD, pages 1305--1314, 2016.
[57]
C. Zhang, G. Zhou, Q. Yuan, H. Zhuang, Y. Zheng, L. Kaplan, S. Wang, and J. Han. Geoburst: Real-time local event detection in geo-tagged tweet streams. In SIGIR, pages 513--522, 2016.
[58]
W. Zhang and J. Wang. Location and time aware social collaborative retrieval for new successive point-of-interest recommendation. In CIKM, pages 1221--1230, 2015.
[59]
K. Zheng, Y. Zheng, N. J. Yuan, and S. Shang. On discovery of gathering patterns from trajectories. In ICDE, pages 242--253, 2013.

Cited By

View all
  • (2025)Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlookInformation Fusion10.1016/j.inffus.2024.102606113(102606)Online publication date: Jan-2025
  • (2024)Mobility Prediction via Rule-Enhanced Knowledge GraphACM Transactions on Knowledge Discovery from Data10.1145/367701918:9(1-21)Online publication date: 24-Jul-2024
  • (2023)An Information Theory Based Method for Quantifying the Predictability of Human MobilityACM Transactions on Knowledge Discovery from Data10.1145/359750017:9(1-19)Online publication date: 18-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSDM '17: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
February 2017
868 pages
ISBN:9781450346757
DOI:10.1145/3018661
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 February 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. location prediction
  2. mobility modeling
  3. periodicity detection

Qualifiers

  • Research-article

Funding Sources

Conference

WSDM 2017

Acceptance Rates

WSDM '17 Paper Acceptance Rate 80 of 505 submissions, 16%;
Overall Acceptance Rate 498 of 2,863 submissions, 17%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)120
  • Downloads (Last 6 weeks)35
Reflects downloads up to 17 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlookInformation Fusion10.1016/j.inffus.2024.102606113(102606)Online publication date: Jan-2025
  • (2024)Mobility Prediction via Rule-Enhanced Knowledge GraphACM Transactions on Knowledge Discovery from Data10.1145/367701918:9(1-21)Online publication date: 24-Jul-2024
  • (2023)An Information Theory Based Method for Quantifying the Predictability of Human MobilityACM Transactions on Knowledge Discovery from Data10.1145/359750017:9(1-19)Online publication date: 18-Jul-2023
  • (2022)Language Modeling on Location-Based Social NetworksISPRS International Journal of Geo-Information10.3390/ijgi1102014711:2(147)Online publication date: 18-Feb-2022
  • (2022)Human Mobility Prediction with Calibration for Noisy TrajectoriesElectronics10.3390/electronics1120336211:20(3362)Online publication date: 18-Oct-2022
  • (2022)LuxProceedings of the VLDB Endowment10.14778/3494124.349415115:3(727-738)Online publication date: 4-Feb-2022
  • (2022)Incremental partitioning for efficient spatial data analyticsProceedings of the VLDB Endowment10.14778/3494124.349415015:3(713-726)Online publication date: 4-Feb-2022
  • (2022)Points-of-interest relationship inference with spatial-enriched graph neural networksProceedings of the VLDB Endowment10.14778/3494124.349413415:3(504-512)Online publication date: 4-Feb-2022
  • (2022)Provenance-based data skippingProceedings of the VLDB Endowment10.14778/3494124.349413015:3(451-464)Online publication date: 4-Feb-2022
  • (2022)Multigraph Aggregation Spatiotemporal Graph Convolution Network for Ride-Hailing Pick-Up Region PredictionWireless Communications & Mobile Computing10.1155/2022/98151332022Online publication date: 1-Jan-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media