Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3018661.3018731acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article
Public Access

Motifs in Temporal Networks

Published: 02 February 2017 Publication History

Abstract

Networks are a fundamental tool for modeling complex systems in a variety of domains including social and communication networks as well as biology and neuroscience. The counts of small subgraph patterns in networks, called network motifs, are crucial to understanding the structure and function of these systems. However, the role of network motifs for temporal networks, which contain many timestamped links between nodes, is not well understood.
Here we develop a notion of a temporal network motif as an elementary unit of temporal networks and provide a general methodology for counting such motifs. We define temporal network motifs as induced subgraphs on sequences of edges, design several fast algorithms for counting temporal network motifs, and prove their runtime complexity. We also show that our fast algorithms achieve 1.3x to 56.5x speedups compared to a baseline method.
We use our algorithms to count temporal network motifs in a variety of real-world datasets. Results show that networks from different domains have significantly different motif frequencies, whereas networks from the same domain tend to have similar motif frequencies. We also find that measuring motif counts at various time scales reveals different behavior.

References

[1]
M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis, and D. Koutra. Com2: fast automatic discovery of temporal ('comet') communities. In PAKDD, 2014.
[2]
A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509--512, 1999.
[3]
A. R. Benson, D. F. Gleich, and J. Leskovec. Tensor spectral clustering for partitioning higher-order network structures. In SDM, 2015.
[4]
A. R. Benson, D. F. Gleich, and J. Leskovec. Higher-order organization of complex networks. Science, 353(6295):163--166, 2016.
[5]
M. Berlingerio, F. Bonchi, B. Bringmann, and A. Gionis. Mining graph evolution rules. In ECML PKDD, 2009.
[6]
D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal link prediction using matrix and tensor factorizations. TKDD, 5(2):10, 2011.
[7]
S. Gurukar, S. Ranu, and B. Ravindran. Commit: A scalable approach to mining communication motifs from dynamic networks. In SIGMOD, 2015.
[8]
P. Holme and J. Saramäki. Temporal networks. Physics Reports, 519(3):97--125, 2012.
[9]
H. Huang, J. Tang, S. Wu, L. Liu, et al. Mining triadic closure patterns in social networks. In WWW, 2014.
[10]
A. Z. Jacobs, S. F. Way, J. Ugander, and A. Clauset. Assembling thefacebook: Using heterogeneity to understand online social network assembly. In Web Science, 2015.
[11]
D. Kondor, M. Pósfai, I. Csabai, and G. Vattay. Do the rich get richer? an empirical analysis of the bitcoin transaction network. PLOS ONE, 9(2):e86197, 2014.
[12]
G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network. Science, 311(5757):88--90, 2006.
[13]
L. Kovanen, M. Karsai, K. Kaski, J. Kertész, and J. Saramäki. Temporal motifs in time-dependent networks. JSTAT, 2011(11):P11005, 2011.
[14]
M. Latapy. Main-memory triangle computations for very large (sparse (power-law)) graphs. Theoretical Computer Science, 407(1):458--473, 2008.
[15]
J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In CHI, 2010.
[16]
J. Leskovec, D. P. Huttenlocher, and J. M. Kleinberg. Governance in social media: A case study of the wikipedia promotion process. In ICWSM, 2010.
[17]
J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. TKDD, 1(1):2, 2007.
[18]
R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon. Superfamilies of evolved and designed networks. Science, 303(5663):1538--1542, 2004.
[19]
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: simple building blocks of complex networks. Science, 298(5594):824--827, 2002.
[20]
M. E. Newman. The structure and function of complex networks. SIAM Review, 45(2):167--256, 2003.
[21]
P. Panzarasa, T. Opsahl, and K. M. Carley. Patterns and dynamics of users' behavior and interaction: Network analysis of an online community. JASIST, 2009.
[22]
A. Pinar, C. Seshadhri, and V. Vishal. ESCAPE: Efficiently Counting All 5-Vertex Subgraphs. arXiv: 1610.09411, 2016.
[23]
C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD, 2007.
[24]
J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping the empirical and extremal geography of large graph collections. In WWW, 2013.
[25]
A. Vazquez, R. Dobrin, D. Sergi, J.-P. Eckmann, Z. Oltvai, and A.-L. Barabási. The topological relationship between the large-scale attributes and local interaction patterns of complex networks. PNAS, 101(52):17940--17945, 2004.
[26]
B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the evolution of user interaction in Facebook. In WOSN, 2009.
[27]
S. Wernicke and F. Rasche. Fanmod: a tool for fast network motif detection. Bioinformatics, 22(9):1152--1153, 2006.
[28]
Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber. Evidence for a bimodal distribution in human communication. PNAS, 107(44):18803--18808, 2010.
[29]
Ö. N. Yaveroğlu, N. Malod-Dognin, D. Davis, Z. Levnajic, V. Janjic, R. Karapandza, A. Stojmirovic, and N. Pržulj. Revealing the hidden language of complex networks. Scientific Reports, 4, 2014.
[30]
Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, and W.-C. Lee. Communication motifs: a tool to characterize social communications. In CIKM, 2010.

Cited By

View all
  • (2025)Measuring and utilizing temporal network dissimilarityCommunications Physics10.1038/s42005-025-01940-68:1Online publication date: 25-Jan-2025
  • (2025)Fast Approximate Temporal Butterfly Counting on Bipartite Graphs via Edge SamplingDatabase Systems for Advanced Applications. DASFAA 2024 International Workshops10.1007/978-981-96-0914-7_4(42-57)Online publication date: 23-Jan-2025
  • (2025)Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale TransactionsMachine Learning and Principles and Practice of Knowledge Discovery in Databases10.1007/978-3-031-74643-7_29(402-419)Online publication date: 1-Jan-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSDM '17: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
February 2017
868 pages
ISBN:9781450346757
DOI:10.1145/3018661
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 February 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. motifs
  2. temporal networks

Qualifiers

  • Research-article

Funding Sources

Conference

WSDM 2017

Acceptance Rates

WSDM '17 Paper Acceptance Rate 80 of 505 submissions, 16%;
Overall Acceptance Rate 498 of 2,863 submissions, 17%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)977
  • Downloads (Last 6 weeks)114
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Measuring and utilizing temporal network dissimilarityCommunications Physics10.1038/s42005-025-01940-68:1Online publication date: 25-Jan-2025
  • (2025)Fast Approximate Temporal Butterfly Counting on Bipartite Graphs via Edge SamplingDatabase Systems for Advanced Applications. DASFAA 2024 International Workshops10.1007/978-981-96-0914-7_4(42-57)Online publication date: 23-Jan-2025
  • (2025)Topology-Agnostic Detection of Temporal Money Laundering Flows in Billion-Scale TransactionsMachine Learning and Principles and Practice of Knowledge Discovery in Databases10.1007/978-3-031-74643-7_29(402-419)Online publication date: 1-Jan-2025
  • (2024)Incremental topological ordering and cycle detection with predictionsProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693503(35240-35254)Online publication date: 21-Jul-2024
  • (2024)Dynamics of Friendship Index in Complex NetworksModelling10.3390/modelling50300635:3(1219-1238)Online publication date: 5-Sep-2024
  • (2024)Influence Maximization in Temporal Social Networks with the Mixed K-Shell MethodElectronics10.3390/electronics1313253313:13(2533)Online publication date: 27-Jun-2024
  • (2024)Patterns in Temporal Networks with Higher-Order Egocentric StructuresEntropy10.3390/e2603025626:3(256)Online publication date: 13-Mar-2024
  • (2024)TSAGNN: Temporal link predict method based on two stream adaptive graph neural networkIntelligent Data Analysis10.3233/IDA-23736728:1(77-97)Online publication date: 3-Feb-2024
  • (2024)Raphtory: The temporal graph engine for Rust and PythonJournal of Open Source Software10.21105/joss.059409:95(5940)Online publication date: Mar-2024
  • (2024)D3-GNN: Dynamic Distributed Dataflow for Streaming Graph Neural NetworksProceedings of the VLDB Endowment10.14778/3681954.368196117:11(2764-2777)Online publication date: 1-Jul-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media