Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3035918.3064027acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

The Dynamic Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates

Published: 09 May 2017 Publication History

Abstract

Modern computing tasks such as real-time analytics require refresh of query results under high update rates. Incremental View Maintenance (IVM) approaches this problem by materializing results in order to avoid recomputation. IVM naturally induces a trade-off between the space needed to maintain the materialized results and the time used to process updates. In this paper, we show that the full materialization of results is a barrier for more general optimization strategies. In particular, we present a new approach for evaluating queries under updates. Instead of the materialization of results, we require a data structure that allows: (1) linear time maintenance under updates, (2) constant-delay enumeration of the output, (3) constant-time lookups in the output, while (4) using only linear space in the size of the database. We call such a structure a Dynamic Constant-delay Linear Representation (DCLR) for the query. We show that DYN, a dynamic version of the Yannakakis algorithm, yields DCLRs for the class of free-connex acyclic CQs. We show that this is optimal in the sense that no DCLR can exist for CQs that are not free-connex acyclic. Moreover, we identify a sub-class of queries for which DYN features constant-time update per tuple and show that this class is maximal. Finally, using the TPC-H and TPC-DS benchmarks, we experimentally compare DYN and a higher-order IVM (HIVM) engine. Our approach is not only more efficient in terms of memory consumption (as expected), but is also consistently faster in processing updates.

References

[1]
S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases. Addison-Wesley, 1995.
[2]
M. Abo Khamis, H. Q. Ngo, and A. Rudra. FAQ: Questions asked frequently. In Proc. of PODS, pages 13--28, 2016.
[3]
M. E. Adiba and B. G. Lindsay. Database snapshots. In Proc. of VLDB 1980, pages 86--91, 1980.
[4]
S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Trans. Information Theory, 46(2):325--343, 2006.
[5]
G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumeration. In Proc. of CSL, pages 208--222, 2007.
[6]
N. Bakibayev, T. Kočiský, D. Olteanu, and J. Závodný. Aggregation and ordering in factorised databases. Proc. of VLDB, 6(14):1990--2001, 2013.
[7]
C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates. In Proc. of PODS, 2017. To appear.
[8]
J. A. Blakeley, N. Coburn, and P.-V. Larson. Updating derived relations: Detecting irrelevant and autonomously computable updates. ACM TODS, (3):369--400, 1989.
[9]
J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently updating materialized views. In Proc. of SIGMOD, pages 61--71, 1986.
[10]
J. Brault-Baron. De la pertinence de l'énumération: complexité en logiques. PhD thesis, Université de Caen, 2013.
[11]
O. P. Buneman and E. K. Clemons. Efficiently monitoring relational databases. ACM TODS, (3):368--382, 1979.
[12]
S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In Proc. of VLDB, pages 577--589, 1991.
[13]
R. Chirkova and J. Yang. Materialized Views. Now Publishers Inc., Hanover, MA, USA, 2012.
[14]
T. Cormen. Introduction to Algorithms, 3rd Edition:. MIT Press, 2009.
[15]
G. Cugola and A. Margara. Processing flows of information: From data stream to complex event processing. ACM CSUR, 44(3):15:1--15:62, 2012.
[16]
N. Dalvi and D. Suciu. The dichotomy of probabilistic inference for unions of conjunctive queries. J. ACM, 59(6):30:1--30:87, 2013.
[17]
R. Fink and D. Olteanu. Dichotomies for queries with negation in probabilistic databases. ACM TODS, 41(1):4:1--4:47, 2016.
[18]
G. Gottlob, M. Grohe, n. Musliu, M. Samer, and F. Scarcello. Hypertree decompositions: Structure, algorithms, and applications. In Proc. of WG, pages 1--15, 2005.
[19]
G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width. J. Comput. Syst. Sci., 66(4):775--808, 2003.
[20]
A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In Proc. of SIGMOD, pages 157--166, 1993.
[21]
H. Gupta and I. S. Mumick. Incremental maintenance of aggregate and outerjoin expressions. Information Systems, (6):435--464, 2006.
[22]
M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proc. of STOC, pages 21--30, 2015.
[23]
M. R. Joglekar, R. Puttagunta, and C. Ré. Ajar: Aggregations and joins over annotated relations. In Proc. of PODS, pages 91--106, 2016.
[24]
A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Implementing incremental view maintenance in nested data models. In Proc. of DBPL, pages 202--221, 1997.
[25]
C. Koch. Incremental query evaluation in a ring of databases. In Proc. of PODS, pages 87--98, 2010.
[26]
C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and A. Shaikhha. Dbtoaster: higher-order delta processing for dynamic, frequently fresh views. VLDB Journal, pages 253--278, 2014.
[27]
P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In Proc. of PODS, pages 223--234, 2011.
[28]
I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and summary tables in a warehouse. SIGMOD Records, 26(2):100--111, 1997.
[29]
H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New developments in the theory of join algorithms. SIGMOD Records, 42(4):5--16, 2014.
[30]
M. Nikolic, M. Dashti, and C. Koch. How to win a hot dog eating contest: Distributed incremental view maintenance with batch updates. In Proc.of SIGMOD, pages 511--526, 2016.
[31]
D. Olteanu and J. Závodný. Size bounds for factorised representations of query results. ACM TODS, 40(1):2:1--2:44, 2015.
[32]
C. H. Papadimitriou. Computational complexity. In Encyclopedia of Computer Science, pages 260--265. 2003.
[33]
X. Qian and G. Wiederhold. Incremental recomputation of active relational expressions. IEEE Trans. on Knowl. and Data Eng., 3(3):337--341, 1991.
[34]
K. A. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance and integrity constraint checking: Trading space for time. In Proc. of SIGMOD, pages 447--458, 1996.
[35]
N. Roussopoulos. Materialized views and data warehouses. SIGMOD Records, 27(1):21--26, 1998.
[36]
M. Schleich, D. Olteanu, and R. Ciucanu. Learning linear regression models over factorized joins. In Proc. of SIGMOD, pages 3--18, 2016.
[37]
L. Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD Record, 44(1):10--17, 2015.
[38]
M. Y. Vardi. The complexity of relational query languages (extended abstract). In Proc. of STOC, pages 137--146, 1982.
[39]
M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of VLDB, pages 82--94, 1981.

Cited By

View all
  • (2024)Robust Join Processing with Diamond Hardened JoinsProceedings of the VLDB Endowment10.14778/3681954.368199517:11(3215-3228)Online publication date: 1-Jul-2024
  • (2024)TC-Match: Fast Time-Constrained Continuous Subgraph MatchingProceedings of the VLDB Endowment10.14778/3681954.368196317:11(2791-2804)Online publication date: 30-Aug-2024
  • (2024)Streaming enumeration on nested documentsACM Transactions on Database Systems10.1145/3701557Online publication date: 25-Oct-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '17: Proceedings of the 2017 ACM International Conference on Management of Data
May 2017
1810 pages
ISBN:9781450341974
DOI:10.1145/3035918
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 May 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. acyclic joins
  2. dynamic query processing
  3. incremental view maintenance

Qualifiers

  • Research-article

Funding Sources

  • Wiener-Anspach foundation
  • Erasmus Mundus Joint Doctorate in
  • Brussels Captial Region--Innoviris

Conference

SIGMOD/PODS'17
Sponsor:

Acceptance Rates

Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)87
  • Downloads (Last 6 weeks)11
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Robust Join Processing with Diamond Hardened JoinsProceedings of the VLDB Endowment10.14778/3681954.368199517:11(3215-3228)Online publication date: 1-Jul-2024
  • (2024)TC-Match: Fast Time-Constrained Continuous Subgraph MatchingProceedings of the VLDB Endowment10.14778/3681954.368196317:11(2791-2804)Online publication date: 30-Aug-2024
  • (2024)Streaming enumeration on nested documentsACM Transactions on Database Systems10.1145/3701557Online publication date: 25-Oct-2024
  • (2024)Insert-Only versus Insert-Delete in Dynamic Query EvaluationProceedings of the ACM on Management of Data10.1145/36958372:5(1-26)Online publication date: 7-Nov-2024
  • (2024)Complex Event Recognition meets Hierarchical Conjunctive QueriesProceedings of the ACM on Management of Data10.1145/36958342:5(1-26)Online publication date: 7-Nov-2024
  • (2024)Relational Algorithms for Top-k Query EvaluationProceedings of the ACM on Management of Data10.1145/36549712:3(1-27)Online publication date: 30-May-2024
  • (2024)Reservoir Sampling over JoinsProceedings of the ACM on Management of Data10.1145/36549212:3(1-26)Online publication date: 30-May-2024
  • (2024)Fast Matrix Multiplication for Query ProcessingProceedings of the ACM on Management of Data10.1145/36515992:2(1-25)Online publication date: 14-May-2024
  • (2024)On Reporting Durable Patterns in Temporal Proximity GraphsProceedings of the ACM on Management of Data10.1145/36511442:2(1-26)Online publication date: 14-May-2024
  • (2024)Recent Increments in Incremental View MaintenanceCompanion of the 43rd Symposium on Principles of Database Systems10.1145/3635138.3654763(8-17)Online publication date: 9-Jun-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media