Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3038912.3052676acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

DeepMood: Forecasting Depressed Mood Based on Self-Reported Histories via Recurrent Neural Networks

Published: 03 April 2017 Publication History

Abstract

Depression is a prevailing issue and is an increasing problem in many people's lives. Without observable diagnostic criteria, the signs of depression may go unnoticed, resulting in high demand for detecting depression in advance automatically. This paper tackles the challenging problem of forecasting severely depressed moods based on self-reported histories. Despite the large amount of research on understanding individual moods including depression, anxiety, and stress based on behavioral logs collected by pervasive computing devices such as smartphones, forecasting depressed moods is still an open question. This paper develops a recurrent neural network algorithm that incorporates categorical embedding layers for forecasting depression. We collected large-scale records from 2,382 self-declared depressed people to conduct the experiment. Experimental results show that our method forecast the severely depressed mood of a user based on self-reported histories, with higher accuracy than SVM. The results also showed that the long-term historical information of a user improves the accuracy of forecasting depressed mood.

References

[1]
N. Aharony, W. Pan, C. Ip, I. Khayal, and A. Pentland. Social fMRI: Investigating and shaping social mechanisms in the real world. volume 7, pages 643--659, 2011.
[2]
P. R. Aylard, J. H. Gooding, and P. J. McKenna. A validation study of three anxiety and depression self-assessment scales. Journal of Psychosomatic Research, 31(2):261--268, 1987.
[3]
D. Ben-Zeev, E. A. Scherer, R. Wang, H. Xie, and A. T. Campbell. Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health. Psychiatric Rehabilitation Journal, 38(3):218--226, 2015.
[4]
A. Bogomolov, B. Lepri, M. Ferron, F. Pianesi, and A. Pentland. Pervasive stress recognition for sustainable living. pages 345--350, 2014.
[5]
M. N. Burns, M. Begale, J. Duffecy, D. Gergle, C. J. Karr, E. Giangrande, and D. C. Mohr. Harnessing context sensing to develop a mobile intervention for depression. Journal of Medical Internet Research, 13(3):e55--17, 2011.
[6]
L. Canzian and M. Musolesi. Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility trace analysis. In Proc. UbiComp '15, pages 1293--1304, 2015.
[7]
P. Chow, H. Xiong, K. Fua, W. Bonelli, and B. A. Teachman. SAD: Social anxiety and depression monitoring system for college students. pages 125--130, 2016.
[8]
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273--297, 1995.
[9]
A. A. Farhan, J. Lu, J. Bi, A. Russell, B. Wang, and A. Bamis. Multi-view Bi-clustering to Identify Smartphone Sensing Features Indicative of Depression. In Proc. IEEE CHASE '16, pages 264--273, 2016.
[10]
A. A. Farhan, C. Yue, R. Morillo, S. Ware, and J. Lu. Behavior vs. introspection: Refining prediction of clinical depression via smartphone sensing data. Proc. IEEE Wireless Health Conference, 2016.
[11]
T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861--874, 2006.
[12]
P. L. Gerald B. Can Smartphones Detect Stress-related Changes in the Behaviour of Individuals? In Proc. PerCom '12, pages 423--426, 2012.
[13]
S. A. Golder and M. W. Macy. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science, 333(6051):1878--1881, 2011.
[14]
S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735--1780, 1997.
[15]
Y. Huang, H. Xiong, K. Leach, Y. Zhang, P. Chow, K. Fua, B. A. Teachman, and L. E. Barnes. Assessing social anxiety using gps trajectories and point-of-interest data. In Proc. UbiComp '16, pages 898--903, 2016.
[16]
N. Jaques, S. Taylor, A. Azaria, A. Ghandeharioun, A. Sano, and R. W. Picard. Predicting students' happiness from physiology, phone, mobility, and behavioral data. In Proc. ACII, 2015.
[17]
N. Jaques, S. Taylor, and A. Sano. Multi-task, Multi-Kernel Learning for Estimating Individual Wellbeing. Proc. NIPS MultiML Workshop, 2015.
[18]
T. R. Kirchner and S. Shiffman. Spatio-temporal determinants of mental health and well-being: advances in geographically-explicit ecological momentary assessment (GEMA). Social Psychiatry and Psychiatric Epidemiology, 51(9):1211--1223, 2016.
[19]
V. Klema and A. Laub. The singular value decomposition: Its computation and some applications. IEEE Transactions on automatic control, 25(2):164--176, 1980.
[20]
K. Kroenke, R. L. Spitzer, and J. B. W. Williams. The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9):606--613, 2001.
[21]
N. D. Lane, M. Lin, M. Mohammod, X. Yang, H. Lu, G. Cardone, S. Ali, and A. Doryab. BeWell: Sensing Sleep, Physical Activities and Social Interactions to Promote Wellbeing. Mobile Networks and Applications, 19(3):1--15, 2014.
[22]
R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong. MoodScope - building a mood sensor from smartphone usage patterns. In Proc. MobiSys '13, 2013.
[23]
Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzell. Learning to Diagnose with LSTM Recurrent Neural Networks. arXiv.org, Nov. 2015.
[24]
A. L. Lopresti, G. L. Maker, S. D. Hood, and P. D. Drummond. A review of peripheral biomarkers in major depression: The potential of inflammatory and oxidative stress biomarkers. Prog Neuropsychopharmacol Biol Psychiatry, 48:102--111, 2014.
[25]
H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. Chittaranjan, A. T. Campbell, D. Gatica-Perez, and T. Choudhury. StressSense - detecting stress in unconstrained acoustic environments using smartphones. pages 351--360, 2012.
[26]
Y. Ma, B. Xu, Y. Bai, G. Sun, and R. Zhu. Daily mood assessment based on mobile phone sensing. In Proc. BSN '12, pages 142--147, 2012.
[27]
G. MacKerron and S. Mourato. Happiness is greater in natural environments. Global Environmental Change, 23(5):992--1000, 2013.
[28]
A. Madan, M. Cebrian, D. Lazer, and A. Pentland. Social sensing for epidemiological behavior change. In Proc. Ubicomp '10, pages 291--300, 2010.
[29]
M. Matthews, S. Abdullah, G. Gay, and T. Choudhury. Tracking Mental Well-Being - Balancing Rich Sensing and Patient Needs. IEEE Computer, (4):36--43, 2014.
[30]
A. Mehrotra, R. Hendley, and M. Musolesi. Towards multi-modal anticipatory monitoring of depressive states through the analysis of human-smartphone interaction. In Proc. UbiComp '16, pages 1132--1138, 2016.
[31]
D. S. Moskowitz and S. N. Young. Ecological momentary assessment: what it is and why it is a method of the future in clinical psychopharmacology. Journal of Psychiatry & Neuroscience, 31(1):13--20, 2006.
[32]
S. T. Moturu, I. Khayal, N. Aharony, W. Pan, and A. Pentland. Using social sensing to understand the links between sleep, mood, and sociability. In Proc. SocialCom/PASSAT, pages 208--214, 2011.
[33]
M. Rabbi, S. Ali, T. Choudhury, and E. Berke. Passive and In-Situ assessment of mental and physical well-being using mobile sensors. UbiComp, pages 385--394, 2011.
[34]
K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth, and A. Aucinas. Emotionsense - a mobile phones based adaptive platform for experimental social psychology research. In Proc. UbiComp '10, pages 281--290, 2010.
[35]
A. Raiker, J. Latayan, S. Pagsuyoin, and A. Mathieu. Use of biomarkers in depression diagnostics. In Proc. SIEDS, pages 245--249, 2016.
[36]
S. Saeb, M. Zhang, C. J. Karr, S. M. Schueller, M. E. Corden, K. P. Kording, and D. C. Mohr. Mobile Phone Sensor Correlates of Depressive Symptom Severity in Daily-Life Behavior: An Exploratory Study. Journal of Medical Internet Research, 17(7):e175--11, 2015.
[37]
A. Sano. Measuring College Students' Sleep, Stress, Mental Health and Wellbeing with Wearable Sensors and Mobile Phones. PhD thesis, MIT, 2015.
[38]
A. Sano, A. J. K. Phillips, A. Z. Yu, A. W. McHill, S. Taylor, N. Jaques, C. A. Czeisler, E. B. Klerman, and R. W. Picard. Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones. In Proc. BSN '15, pages 1--6, 2015.
[39]
A. Sano and R. W. Picard. Stress Recognition Using Wearable Sensors and Mobile Phones. In Proc. ACII '13, pages 671--676, 2013.
[40]
R. L. Spitzer, K. Kroenke, J. B. W. Williams, and B. Löwe. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Archives of Internal Medicine, 166(10):1092--1097, 2006.
[41]
R. L. Spitzer, K. Kroenke, J. B. W. Williams, and the Patient Health Questionnaire Primary Care Study Group. Validation and Utility of a Self-report Version of PRIME-MD: The PHQ Primary Care Study. JAMA, 282(18):1737--1744, 1999.
[42]
N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:929--1958, 2014.
[43]
A. A. Stone and S. Shiffman. Ecological momentary assessment (EMA) in behavorial medicine. Annals of Behavioral Medicine, 1994.
[44]
M. P. Taylor. Tell me why I don't like Mondays: investigating day of the week effects on job satisfaction and psychological well-being. Journal of the Royal Statistical Society: Series A (Statistics in Society), 169(1):127--142, 2006.
[45]
T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp, COURSERA: Neural networks for machine learning. Technical report, 2012.
[46]
E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial variables, and redundancy elimination. Journal of Machine Learning Research, 10:1341--1366, 2009.
[47]
P. Wang, J. Guo, Y. Lan, J. Xu, and X. Cheng. Your cart tells you: Inferring demographic attributes from purchase data. In Proc. WSDM '16, pages 173--182, 2016.
[48]
R. Wang, M. S. H. Aung, and S. Abdullah. CrossCheck: Toward passive sensing and detection of mental health changes in people with schizophrenia. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 886--897, 2016.
[49]
R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, and A. T. Campbell. StudentLife: Assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proc. UbiComp '14, pages 3--14, 2014.
[50]
D. Zhou, J. Luo, V. M. B. Silenzio, Y. Zhou, J. Hu, G. Currier, and H. A. Kautz. Tackling Mental Health by Integrating Unobtrusive Multimodal Sensing. In Proc. AAAI '15, pages 1401--1408, 2015.

Cited By

View all
  • (2024)A neural network paradigm for modeling psychometric data and estimating IRT model parameters: Cross estimation networkBehavior Research Methods10.3758/s13428-024-02406-356:7(7026-7058)Online publication date: 12-Apr-2024
  • (2024)Forecasting events in multidimensional electroencephalographic brain data: Application to epileptic seizure prediction.2024 27th International Conference on Information Fusion (FUSION)10.23919/FUSION59988.2024.10706283(1-8)Online publication date: 8-Jul-2024
  • (2024)Momentary Stressor Logging and Reflective Visualizations: Implications for Stress Management with WearablesProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642662(1-19)Online publication date: 11-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '17: Proceedings of the 26th International Conference on World Wide Web
April 2017
1678 pages
ISBN:9781450349130

Sponsors

  • IW3C2: International World Wide Web Conference Committee

In-Cooperation

Publisher

International World Wide Web Conferences Steering Committee

Republic and Canton of Geneva, Switzerland

Publication History

Published: 03 April 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. depression
  2. mobile applications
  3. neural networks

Qualifiers

  • Research-article

Conference

WWW '17
Sponsor:
  • IW3C2

Acceptance Rates

WWW '17 Paper Acceptance Rate 164 of 966 submissions, 17%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)85
  • Downloads (Last 6 weeks)6
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A neural network paradigm for modeling psychometric data and estimating IRT model parameters: Cross estimation networkBehavior Research Methods10.3758/s13428-024-02406-356:7(7026-7058)Online publication date: 12-Apr-2024
  • (2024)Forecasting events in multidimensional electroencephalographic brain data: Application to epileptic seizure prediction.2024 27th International Conference on Information Fusion (FUSION)10.23919/FUSION59988.2024.10706283(1-8)Online publication date: 8-Jul-2024
  • (2024)Momentary Stressor Logging and Reflective Visualizations: Implications for Stress Management with WearablesProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3642662(1-19)Online publication date: 11-May-2024
  • (2024)Global Mental Health Disorder Trends: Advanced Forecasting Techniques Using Time Series and Neural Networks2024 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC)10.1109/MIUCC62295.2024.10783591(273-280)Online publication date: 13-Nov-2024
  • (2024)Uncovering Malicious Accounts in Open Mobile Social Networks Using a Graph- and Text-Based Attention Fusion AlgorithmIEEE Internet of Things Journal10.1109/JIOT.2024.341655611:19(31040-31052)Online publication date: 1-Oct-2024
  • (2024)Using Mobile Daily Mood and Anxiety Self-ratings to Predict Depression Symptom Improvement2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)10.1109/CHASE60773.2024.00012(13-24)Online publication date: 19-Jun-2024
  • (2023)Ensemble Approach to Combining Episode Prediction Models Using Sequential Circadian Rhythm Sensor Data from Mental Health PatientsSensors10.3390/s2320854423:20(8544)Online publication date: 18-Oct-2023
  • (2023)A Depression Recognition Method Based on the Alteration of Video Temporal Angle FeaturesApplied Sciences10.3390/app1316923013:16(9230)Online publication date: 14-Aug-2023
  • (2023)Predicting Symptom Improvement During Depression Treatment Using Sleep Sensory DataProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36109327:3(1-21)Online publication date: 27-Sep-2023
  • (2023)Towards Efficient Emotion Self-report Collection Using Human-AI CollaborationProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35962697:2(1-23)Online publication date: 12-Jun-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media