Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3067695.3082481acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Towards coding strategies for forecasting-based scheduling in smart grids and the energy lab 2.0

Published: 15 July 2017 Publication History

Abstract

Development of the power supply system towards a more decentralized system with a growing share of renewable energies constitutes an additional complexity for its reliable, secure, and economic operation. This has a strong impact on a variety of optimization tasks, such as power plant resource scheduling, reactive power management, or the expansion of the system by additional transmission lines, power generators or storage systems. In particular, scheduling and expansion planning depend strongly on a reliable forecast of expected demands and electricity production, the latter being a demanding task for volatile sources, such as wind power plants or photovoltaic power generators (PV). For testing new approaches and strategies, the Karlsruhe Institute of Technology (KIT) develops a test bed comprising different energy grids called Energy Lab 2.0. This test bed will allow studying the effects of new tools, forecasting and scheduling techniques, and other algorithms aimed at managing a smart grid. The lab and applied forecasting techniques will be briefly introduced in the present contribution.
First ideas about metaheuristic scheduling of different energy sources based on production and demand forecasts with the aim of ensuring a reliable and economic energy supply are introduced. Appropriate representations for Evolutionary Algorithms (EAs) are discussed and some experience from earlier scheduling projects for fast scheduling of many jobs to heterogeneous resources are given.

References

[1]
OPOCE. 1996. EUR-Lex - 31996L0092 - EN, http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31996L0092:EN:HTML Accessed: 15.02.2017.
[2]
R. Scholz, M. Beckmann, C. Pieper, M. Muster, and R. Weber. 2014. Considerations on providing the energy needs using exclusively renewable sources: Energiewende in Germany. Renew Sust Energ Rev 35, 109--125.
[3]
P. Kohlhepp and V. Hagenmeyer. 2017. Technical potential of buildings in Germany as flexible power-to-heat storages for smart grid operation. Energy Technology. DOI:
[4]
S. Erlinghagen and J. Markard. 2012. Smart grids and the transformation of the electricity sector: ICT firms as potential catalysts for sectoral change. Energy Policy 51, 895--906.
[5]
C. Felix Covrig, M. Ardelean, J. Vasiljevska, A. Mengolini, G. Fulli, and E. Amoiralis, et al. 2014. Smart grid projects outlook 2014. Publications Office, Luxembourg.
[6]
V. Hagenmeyer, H. Kemal Çakmak, C. Düpmeier, T. Faulwasser, J. Isele, and H. B. Keller, et al. 2016. Information and Communication Technology in Energy Lab 2.0: Smart Energies System Simulation and Control Center with an Open-Street-Map-Based Power Flow Simulation Example. Energy Technology 4, 145--162.
[7]
C. Düpmeier, K.-U. Stucky, R. Mikut, and V. Hagenmeyer. 2015. A Concept for the Control, Monitoring and Visualization Center in Energy Lab 2.0. In Energy Informatics, S. Gottwalt, L. König, H. Schmeck (Eds.). LNCS, vol. 9424. Springer, Cham, 83--94.
[8]
S. Klaiber, P. Bretschneider, S. Waczowicz, R. Mikut, I. Konotop, and D. Westermann. A contribution to the load forecast of price elastic consumption behaviour. In 2015 IEEE Eindhoven PowerTech, 1--6.
[9]
N. Dahmen, E. Dinjus, T. Kolb, U. Arnold, H. Leibold, and R. Stahl. 2012. State of the art of the bioliq® process for synthetic biofuels production. Environ. Prog. Sustainable Energy 31, 176--181.
[10]
T. Sato, D. M. Kammen, B. Duan, and M. Macuha. 2015. Smart Grid Standards: Specifications, Requirements, and Technologies. John Wiley & Sons, New Jersey, USA.
[11]
S. Gottwalt, L. König, and H. Schmeck (Eds.). 2015. Energy Informatics. Springer International Publishing, Cham.
[12]
González Ordiano, Jorge Ángel, S. Waczowicz, M. Reischl, R. Mikut, and V. Hagenmeyer. 2016. Photovoltaic power forecasting using simple data-driven models without weather data. Comput Sci Res Dev 2016, 1--10.
[13]
T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman. 2016. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. Int J Forecasting 32, 896--913.
[14]
E. L. Ratnam, S. R. Weiler, C. M. Kellett, and A. T. Murray. 2015. Residential load and rooftop PV generation: an Australian distribution network dataset. Int J Sustainable Energy, 1--20.
[15]
González Ordiano, Jorge Ángel, W. Doneit, S. Waczowicz, L. Gröll, R. Mikut, and V. Hagenmeyer. 2016. Nearest-Neighbor Based Non-Parametric Probabilistic Forecasting with Applications in Photovoltaic Systems. In Proceedings. 26<sup>th</sup> Workshop Computational Intelligence, Dortmund, 24. - 25. November 2016, F. Hoffmann, E. Hüllermeier, R. Mikut (Eds.). KIT Scientific Publishing, Karlsruhe, FRG, 9--30.
[16]
M. Y. Hu, G. Zhang, C. X. Jiang, and B. E. Patuwo. 1999. A Cross-Validation Analysis of Neural Network Out-of-Sample Performance in Exchange Rate Forecasting. Decision Sci 30, 197--216.
[17]
N. Ludwig, S. Feuerriegel, and D. Neumann. 2015. Putting Big Data analytics to work: Feature selection for forecasting electricity prices using the LASSO and random forests. J Decision Systems 24, 19--36.
[18]
P. Brucker. 2007. Scheduling Algorithms. Springer, Berlin, Heidelberg.
[19]
P. Brucker and S. Knust. 2012. Complex Scheduling. Springer, Berlin, Heidelberg.
[20]
J. Valenzuela and A. E. Smith. 2002. A Seeded Memetic Algorithm for Large Unit Commitment Problems. J. Heuristics 8, 173--195.
[21]
S. P. Simon, N. P. Padhy, and R. S. Anand. 2006. An ant colony system approach for unit commitment problem. Int. J. Elec. Power 28, 315--323.
[22]
C. Chen, J. Wang, Y. Heo, and S. Kishore. 2013. MPC-Based Appliance Scheduling for Residential Building Energy Management Controller. IEEE Trans. Smart Grid 4, 1401--1410.
[23]
O. Alrumayh and K. Bhattacharya. Model predictive control based home energy management system in smart grid. In 2015 IEEE Electrical Power and Energy Conference (EPEC), 152--157.
[24]
C. Yilmaz, S. Albayrak, and M. Lützenberger. 2014. Smart Grid Architectures and the Multi-Agent System Paradigm. In Proc. of the 4<sup>th</sup> Int. Conf. on Smart Grids, Green Communications and IT Energy-aware Technologies, S. Fries, P. Dini (Eds.). IARIA, 90--95.
[25]
E. Xydas, C. Marmaras, and L. M. Cipcigan. 2016. A multi-agent based scheduling algorithm for adaptive electric vehicles charging. Appl Energ 177, 354--365.
[26]
W. Jakob, A. Quinte, K-U. Stucky, and W. Süß. 2008. Fast Multi-objective Scheduling of Jobs to Constrained Resources Using a Hybrid Evolutionary Algorithm. In Parallel Problem Solving from Nature - PPSN X, G. Rudolph, T. Jansen, S. M. Lucas, C. Poloni, N. Beume (Eds.). Springer, 1031--1040.
[27]
C. Blume and W. Jakob. 2009. GLEAM - General Learning Evolutionary Algorithm and Method. Ein Evolutionärer Algorithmus und seine Anwendungen. (in German). KIT Scientific Publishing, Karlsruhe.
[28]
B. Giffler and G. L. Thompson. 1960. Algorithms for Solving Production-Scheduling Problems. Oper Res 8, 487--503.
[29]
F. Möser, W. Jakob, A. Quinte, K-U. Stucky, and W. Süß. 2010. An Assessment of Heuristics for Fast Scheduling of Grid Jobs. In ICSOFT 2010, Proc. of the Fifth ICSOFT, Volume 1, J. M. Cordeiro, M. Virvou, B. Shishkov (Eds.) 1. LNSTICC Press, 184--191.
[30]
W. Jakob, S. Strack, A. Quinte, G. Bengel, K.-U. Stucky, and W. Süß. 2013. Fast Rescheduling of Multiple Workflows to Constrained Heterogeneous Resources Using Multi-Criteria Memetic Computing. Algorithms 6, 245--277.
[31]
V. Nissen. 1994. Evolutionäre Algorithmen. Darstellung, Beispiele, betriebswirtschaftliche Anwendungsmöglichkeiten. (in German). Deutscher Universitäts-Verlag, Wiesbaden.
[32]
C. Blume and W. Jakob. 2002. GLEAM - An Evolutionary Algorithm for Planning and Control Based on Evolution Strategy. In Late Breaking papers at the Genetic and Evolutionary Computation Conf. (GECCO-2002), E. Cantú-Paz (Ed.) LBP, 31--38.

Cited By

View all
  • (2024)Dynamic Phenotype Mapping in Evolutionary Algorithms for Energy Hub SchedulingEnergy Informatics10.1007/978-3-031-74741-0_14(205-223)Online publication date: 23-Oct-2024
  • (2023)Dynamic Chromosome Interpretation in Evolutionary Algorithms for Distributed Energy Resources SchedulingProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3590666(755-758)Online publication date: 15-Jul-2023
  • (2023)Dynamic Mapping for Evolutionary Algorithm Based Optimization of Energy Hub Gas Scheduling2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE)10.1109/SEGE59172.2023.10274571(206-211)Online publication date: 13-Aug-2023
  • Show More Cited By

Index Terms

  1. Towards coding strategies for forecasting-based scheduling in smart grids and the energy lab 2.0

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '17: Proceedings of the Genetic and Evolutionary Computation Conference Companion
    July 2017
    1934 pages
    ISBN:9781450349390
    DOI:10.1145/3067695
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 15 July 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. demand forecasting
    2. evolutionary computation
    3. scheduling
    4. smart grids

    Qualifiers

    • Research-article

    Funding Sources

    • German Federal Ministry of Education and Research (BMBF)
    • Ministry of Science, Research and the Arts (MWK) of the State of Baden-Wuerttemberg
    • Helmholtz Association

    Conference

    GECCO '17
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 02 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Dynamic Phenotype Mapping in Evolutionary Algorithms for Energy Hub SchedulingEnergy Informatics10.1007/978-3-031-74741-0_14(205-223)Online publication date: 23-Oct-2024
    • (2023)Dynamic Chromosome Interpretation in Evolutionary Algorithms for Distributed Energy Resources SchedulingProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3590666(755-758)Online publication date: 15-Jul-2023
    • (2023)Dynamic Mapping for Evolutionary Algorithm Based Optimization of Energy Hub Gas Scheduling2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE)10.1109/SEGE59172.2023.10274571(206-211)Online publication date: 13-Aug-2023
    • (2022)Facilitating the hybridization of parallel evolutionary algorithms in cluster computing environmentsProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3520304.3533997(2001-2008)Online publication date: 9-Jul-2022
    • (2020)A Generic Flexible and Scalable Framework for Hierarchical Parallelization of Population-Based MetaheuristicsProceedings of the 12th International Conference on Management of Digital EcoSystems10.1145/3415958.3433041(124-131)Online publication date: 2-Nov-2020
    • (2020)A Generic Scalable Method for Scheduling Distributed Energy Resources Using Parallelized Population-Based MetaheuristicsProceedings of the Future Technologies Conference (FTC) 2020, Volume 210.1007/978-3-030-63089-8_1(1-21)Online publication date: 1-Nov-2020
    • (2018)A generic distributed microservices and container based framework for metaheuristic optimizationProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3205651.3208253(1363-1370)Online publication date: 6-Jul-2018

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media