Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Suggesting Points-of-Interest via Content-Based, Collaborative, and Hybrid Fusion Methods in Mobile Devices

Published: 29 September 2017 Publication History

Abstract

Recommending venues or points-of-interest (POIs) is a hot topic in recent years, especially for tourism applications and mobile users. We propose and evaluate several suggestion methods, taking an effectiveness, feasibility, efficiency, and privacy perspective. The task is addressed by two content-based methods (a Weighted kNN classifier and a Rated Rocchio personalized query), Collaborative Filtering methods, as well as several (rank-based or rating-based) methods of merging results of different systems. Effectiveness is evaluated on two standard benchmark datasets, provided and used by TREC’s Contextual Suggestion Tracks in 2015 and 2016. First, we enrich these datasets with more information on venues, collected from web services like Foursquare and Yelp; we make this extra data available for future experimentation. Then, we find that the content-based methods provide state-of-the-art effectiveness, the collaborative filtering variants mostly suffer from data sparsity problems in the current datasets, and the merging methods further improve results by mainly promoting the first relevant suggestion. Concerning mobile feasibility, efficiency, and user privacy, the content-based methods, especially Rated Rocchio, are the best. Collaborative filtering has the worst efficiency and privacy leaks. Our findings can be very useful for developing effective and efficient operational systems, respecting user privacy. Last, our experiments indicate that better benchmark datasets would be welcome, and the use of additional evaluation measures—more sensitive in recall—is recommended.

Supplementary Material

JPG File (a23-arampatzis.jpg)
MP4 File (a23-arampatzis.mp4)

References

[1]
Gediminas Adomavicius and Alexander Tuzhilin. 2011. Context-aware recommender systems. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor (Eds.). Springer, 217--253.
[2]
Esma Aïmeur, Gilles Brassard, José Manuel Fernandez, Flavien Serge Mani Onana, and Zbigniew Rakowski. 2008. Experimental demonstration of a hybrid privacy-preserving recommender system. In Proceedings of the The 3rd International Conference on Availability, Reliability and Security (ARES’08). IEEE Computer Society, 161--170.
[3]
Mohammad Aliannejadi, Seyed Ali Bahrainian, Anastasia Giachanou, and Fabio Crestani. 2015. University of lugano at TREC 2015: Contextual suggestion and temporal summarization tracks (see [55]). http://trec.nist.gov/pubs/trec24/papers/USI-CXTS.pdf.
[4]
N. S. Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician 46, 3 (1992), 175--185. arXiv:http://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
[5]
Avi Arampatzis. 2001. Unbiased S-D threshold optimization, initial query degradation, decay, and incrementality, for adaptive document filtering. In Proceedings of the 10th Text REtrieval Conference (TREC’01), Ellen M. Voorhees and Donna K. Harman (Eds.), Vol. Special Publication 500-250. National Institute of Standards and Technology (NIST). http://trec.nist.gov/pubs/trec10/papers/KUN-TREC10.pdf.
[6]
Avi Arampatzis, George Drosatos, and Pavlos S. Efraimidis. 2015. Versatile query scrambling for private web search. Information Retrieval Journal 18, 4 (2015), 331--358.
[7]
Avi Arampatzis, Pavlos S. Efraimidis, and George Drosatos. 2013. A query scrambler for search privacy on the internet. Information Retrieval 16, 6 (2013), 657--679.
[8]
Javed A. Aslam and Mark H. Montague. 2001. Models for metasearch. In SIGIR 2001: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, W. Bruce Croft, David J. Harper, Donald H. Kraft, and Justin Zobel (Eds.). ACM, 275--284.
[9]
Sandeep Avula, John O’Connor, and Jaime Arguello. 2013. A nearest neighbor approach to contextual suggestion (s [54]). http://trec.nist.gov/pubs/trec22/papers/unc-context.pdf.
[10]
L. Barkhuus and A. Dey. 2003. Location-based services for mobile telephony: A study of user’s privacy concerns. In Proceedings of the 9th IFIP TC13 International Conference on Human-Computer Interaction (Interact’03). IOS Press, Zürich, Switzerland.
[11]
Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham Gutiérrez. 2013. Recommender systems survey. Knowledge-Based Systems 46 (2013), 109--132.
[12]
Jean-Charles de Borda. 1784. Mémoire sur les élections au scrutin, Histoire de lAcadémie royale des sciences pour 1781. Paris (English translation by De Grazia, A., 1953. Isis 44) (1784).
[13]
Joan Borràs, Antonio Moreno, and Aida Valls. 2014. Intelligent tourism recommender systems: A survey. Expert Systems with Applications 41, 16 (2014), 7370--7389.
[14]
Matthias Braunhofer, Mehdi Elahi, Francesco Ricci, and Thomas Schievenin. 2013. Context-Aware Points of Interest Suggestion with Dynamic Weather Data Management. Springer International Publishing, Cham, 87--100.
[15]
John F. Canny. 2002. Collaborative filtering with privacy via factor analysis. In SIGIR 2002: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Kalervo Jävelin, Micheline Beaulieu, Ricardo A. Baeza-Yates, and Sung-Hyon Myaeng (Eds.). ACM, 238--245.
[16]
Fran Casino, Josep Domingo-Ferrer, Constantinos Patsakis, Domenec Puig, and Agusti Solanas. 2015. A k-anonymous approach to privacy preserving collaborative filtering. Journal of Computer and System Sciences 81, 6 (2015), 1000--1011.
[17]
Manajit Chakraborty, Hitesh Agrawal, Himanshu Shekhar, and C. Ravindranath Chowdary. 2015. Contextual suggestion using tag-description similarity (see [55]). http://trec.nist.gov/pubs/trec24/papers/DPLAB_IITBHU-CX.pdf.
[18]
Weitong Chen, Hanchen Li, and Zhen Yang. 2015. BJUT at TREC 2015 contextual suggestion track (see [55]). http://trec.nist.gov/pubs/trec24/papers/BJUT-CX.pdf.
[19]
Nicolas de Condorcet. 1785. Essai sur l’application de l’analyse la probabilitié des décisions rendues à la pluralité des voix. Paris: l’Imprimerie Royale; Translated in Mclean and Urken 1995 (1785), 91--113.
[20]
George Danezis, Josep Domingo-Ferrer, Marit Hansen, Jaap-Henk Hoepman, Daniel Le Métayer, Rodica Tirtea, and Stefan Schiffner. 2015. Privacy and data protection by design—From policy to engineering. CoRR abs/1501.03726 (2015). http://arxiv.org/abs/1501.03726
[21]
Alexandre De Spindler, Moira C. Norrie, Michael Grossniklaus, and Beat Signer. 2006. Spatio-temporal proximity as a basis for collaborative filtering in mobile environments. In Proceedings of the CAISE Workshop on Ubiquitous Mobile Information and Collaboration Systems (UMICS’06).
[22]
Adriel Dean-Hall, Charles L. A. Clarke, Jaap Kamps, Julia Kiseleva, and Ellen M. Voorhees. 2015. Overview of the TREC 2015 contextual suggestion track (see [55]). Retrieved from http://trec.nist.gov/pubs/trec24/papers/Overview-CX.pdf.
[23]
Adriel Dean-Hall, Charles L. A. Clarke, Jaap Kamps, and Paul Thomas. 2013. Evaluating contextual suggestion. In Proceedings of the 5th International Workshop on Evaluating Information Access (EVIA’13), Ruihua Song and William Webber (Eds.). National Institute of Informatics (NII). Retrieved from http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/EVIA/09-EVIA2013-DeanHallA.pdf.
[24]
Adriel Dean-Hall, Charles L. A. Clarke, Nicole Simone, Jaap Kamps, Paul Thomas, and Ellen M. Voorhees. 2013. Overview of the TREC 2013 contextual suggestion track (see [54]). Retrieved from http://trec.nist.gov/pubs/trec22/papers/CONTEXT.OVERVIEW.pdf.
[25]
Romain Deveaud, M-Dyaa Albakour, Craig Macdonald, and Iadh Ounis. 2014. On the importance of venue-dependent features for learning to rank contextual suggestions. In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management (CIKM’14), Jianzhong Li, Xiaoyang Sean Wang, Minos N. Garofalakis, Ian Soboroff, Torsten Suel, and Min Wang (Eds.). ACM, 1827--1830.
[26]
George Drosatos, Pavlos S. Efraimidis, Avi Arampatzis, Giorgos Stamatelatos, and Ioannis N. Athanasiadis. 2015. Pythia: A privacy-enhanced personalized contextual suggestion system for tourism. In Proceedings of the 39th Annual IEEE Computers, Software and Applications Conference (COMPSAC’15). IEEE Computer Society, 822--827. 0730-3157/15DOI:http://dx.doi.org/10.1109/COMPSAC.2015.88
[27]
George Drosatos, Giorgos Stamatelatos, Avi Arampatzis, and Pavlos S. Efraimidis. 2013. DUTH at TREC 2013 contextual suggestion track (see [54]). Retrieved from http://trec.nist.gov/pubs/trec22/papers/DUTH-context.pdf.
[28]
Pavlos S. Efraimidis, George Drosatos, Avi Arampatzis, Giorgos Stamatelatos, and Ioannis N. Athanasiadis. 2016. A privacy-by-design contextual suggestion system for tourism. Journal of Sensor and Actuator Networks 5, 2 (2016), 10.
[29]
European Parliament. 1995. Directive 95/46/EC. In Official Journal L 281. 0031--0050. Retrieved April 20, 2016 from http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:EN:HTML.
[30]
Damianos Gavalas and Michael Kenteris. 2011. A web-based pervasive recommendation system for mobile tourist guides. Personal and Ubiquitous Computing 15, 7 (2011), 759--770.
[31]
Damianos Gavalas, Charalampos Konstantopoulos, Konstantinos Mastakas, and Grammati Pantziou. 2014. Mobile recommender systems in tourism. Journal of Network and Computer Applications 39, 0 (2014), 319--333.
[32]
Seyyed Hadi Hashemi, Charles L. A. Clarke, Jaap Kamps, Julia Kiseleva, and Ellen M. Voorhees. 2016. Overview of the TREC 2016 contextual suggestion track (see [56]). Retrieved from http://trec.nist.gov/pubs/trec25/papers/Overview-CS.pdf.
[33]
Seyyed Hadi Hashemi, Mostafa Dehghani, and Jaap Kamps. 2015. Parsimonious user and group profiling in venue recommendation (see [55]). Retrieved from http://trec.nist.gov/pubs/trec24/papers/UAmsterdam-CX.pdf.
[34]
Georgios Kalamatianos and Avi Arampatzis. 2016. Recommending points-of-interest via weighted NN, rated rocchio, and borda count fusion (see [56]). Retrieved from http://trec.nist.gov/pubs/trec25/papers/DUTH-CX.pdf.
[35]
Neal Lathia, Stephen Hailes, and Licia Capra. 2007. Private distributed collaborative filtering using estimated concordance measures. In Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys’07), Joseph A. Konstan, John Riedl, and Barry Smyth (Eds.). ACM, 1--8.
[36]
Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press.
[37]
Jarana Manotumruksa, Craig MacDonald, and Iadh Ounis. 2016. Modelling user preferences using word embeddings for context-aware venue recommendation. CoRR abs/1606.07828 (2016).
[38]
Richard McCreadie, Saul Vargas, Craig MacDonald, Iadh Ounis, Stuart Mackie, Jarana Manotumruksa, and Graham McDonald. 2015. University of Glasgow at TREC 2015: Experiments with terrier in contextual suggestion, temporal summarisation and dynamic domain tracks (see [55]). Retrieved from http://trec.nist.gov/pubs/trec24/papers/uogTr-CXTSDD.pdf.
[39]
Frank McSherry and Ilya Mironov. 2009. Differentially private recommender systems: Building privacy into the netflix prize contenders. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, John F. Elder IV, Françoise Fogelman-Soulié, Peter A. Flach, and Mohammed Javeed Zaki (Eds.). ACM, 627--636.
[40]
Kevin Meehan, Tom Lunney, Kevin Curran, and Aiden McCaughey. 2013. Context-aware intelligent recommendation system for tourism. In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). IEEE, 328--331.
[41]
Jian Mo, Luc Lamontagne, and Richard Khoury. 2015. Laval University and Lakehead University experiments at TREC 2015 contextual suggestion track (see [55]). Retrieved from http://trec.nist.gov/pubs/trec24/papers/LavallVA-CX.pdf.
[42]
Rabia Nuray and Fazli Can. 2006. Automatic ranking of information retrieval systems using data fusion. Information Processing 8 Management 42, 3 (2006), 595--614.
[43]
Makbule Gulcin Ozsoy. 2016. From word embeddings to item recommendation. CoRR abs/1601.01356 (2016). http://arxiv.org/abs/1601.01356
[44]
Konstantinos Pliakos and Constantine Kotropoulos. 2014. Simultaneous image clustering, classification and annotation for tourism recommendation. In Proceedings of the 8th Hellenic Conference on Artificial Intelligence: Methods and Applications (SETN 2014), Lecture Notes in Computer Science, Vol. 8445, Aristidis Likas, Konstantinos Blekas, and Dimitris Kalles (Eds.). Springer, 630--640.
[45]
Huseyin Polat and Wenliang Du. 2003. Privacy-preserving collaborative filtering using randomized perturbation techniques. In Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM’03). IEEE Computer Society, 625--628.
[46]
Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2012. Mining of Massive Datasets. Vol. 1. Cambridge University Press, Cambridge.
[47]
Ioannis Refanidis, Christos Emmanouilidis, Ilias Sakellariou, Anastasios Alexiadis, Remous-Aris Koutsiamanis, Konstantinos Agnantis, Aimilia Tasidou, Fotios Kokkoras, and Pavlos S. Efraimidis. 2014. myVisitPlanner: Personalized itinerary planning system for tourism. In Proceedings of the 8th Hellenic Conference on Artificial Intelligence: Methods and Applications (SETN’14), Lecture Notes in Computer Science, Vol. 8445, Aristidis Likas, Konstantinos Blekas, and Dimitris Kalles (Eds.). Springer, 615--629.
[48]
Francesco Ricci, Lior Rokach, and Bracha Shapira. 2011. Introduction to recommender systems handbook. In Recommender Systems Handbook. Springer, 1--35.
[49]
J. J. Rocchio. 1971. Relevance feedback in information retrieval. In The Smart Retrieval System—Experiments in Automatic Document Processing, G. Salton (Ed.). Prentice-Hall, Englewood Cliffs, NJ, 313--323.
[50]
Mark D. Smucker and Charles L. A. Clarke. 2012. Time-based calibration of effectiveness measures. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’12), William R. Hersh, Jamie Callan, Yoelle Maarek, and Mark Sanderson (Eds.). ACM, 95--104.
[51]
S. Stabb, H. Werther, F. Ricci, A. Zipf, U. Gretzel, D. R. Fesenmaier, C. Paris, and C. Knoblock. 2002. Intelligent systems for tourism. IEEE Intelligent Systems 17, 6 (Nov. 2002), 53--66.
[52]
Aidan Trees, Kevin Danaher, Zach Siatkowski, Darren Lim, and Tom Heritage. 2015. Siena College’s institute of Artificial Intelligence TREC 2015 contextual suggestion track (see [55]). Retrieved from http://trec.nist.gov/pubs/trec24/papers/Siena_SUCCESS-CX.pdf.
[53]
Sofia Tsekeridou, Vassileios Tsetsos, Aimilios Chalamandaris, Christodoulos Chamzas, Thomas Filippou, and Christos Pantzoglou. 2014. iGuide: Socially-enriched mobile tourist guide for unexplored sites. In Proceedings of the 8th Hellenic Conference on Artificial Intelligence: Methods and Applications (SETN’14), Lecture Notes in Computer Science, Vol. 8445, Aristidis Likas, Konstantinos Blekas, and Dimitris Kalles (Eds.). Springer, 603--614.
[54]
Ellen M. Voorhees (Ed.). 2013. Proceedings of the 22nd Text REtrieval Conference (TREC’13). Vol. Special Publication 500-302. National Institute of Standards and Technology (NIST). Retrieved from http://trec.nist.gov/pubs/trec22/trec2013.html.
[55]
Ellen M. Voorhees and Angela Ellis (Eds.). 2015. Proceedings of the 24th Text REtrieval Conference (TREC’15). Vol. Special Publication 500-319. National Institute of Standards and Technology (NIST). Retrieved from http://trec.nist.gov/pubs/trec24/trec2015.html.
[56]
Ellen M. Voorhees and Angela Ellis (Eds.). 2016. Proceedings of the 25h Text REtrieval Conference (TREC’16). Vol. Special Publication 500-321. National Institute of Standards and Technology (NIST). Retrieved from http://trec.nist.gov/pubs/trec25/trec2016.html.
[57]
Yuan Wang, Jie Liu, Yalou Huang, Yongfeng Zhang, Yi Zhang, and Xintong Zhang. 2015. Exploration of semantic-aware approach for contextual suggestion using knowledge from the open web (see [55]). http://trec.nist.gov/pubs/trec24/papers/ucsc-CX.pdf.
[58]
Christopher Wing and Hui Yang. 2014. FitYou: Integrating health profiles to real-time contextual suggestion. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’14), Shlomo Geva, Andrew Trotman, Peter Bruza, Charles L. A. Clarke, and Kalervo Järvelin (Eds.). ACM, 1263--1264.
[59]
Zheng Xiang and Iis Tussyadiah. 2014. Information and Communication Technologies in Tourism 2014. Springer, New York.
[60]
Peilin Yang and Hui Fang. 2015. University of Delaware at TREC 2015: Combining opinion profile modeling with complex context filtering for contextual suggestion (see [55]). http://trec.nist.gov/pubs/trec24/papers/udel_fang-CX.pdf.
[61]
Wan-Shiou Yang and San-Yih Hwang. 2013. iTravel: A recommender system in mobile peer-to-peer environment. Journal of Systems and Software 86, 1 (2013), 12--20.
[62]
Lina Yao, Quan Z. Sheng, Yongrui Qin, Xianzhi Wang, Ali Shemshadi, and Qi He. 2015. Context-aware point-of-interest recommendation using tensor factorization with social regularization. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Ricardo A. Baeza-Yates, Mounia Lalmas, Alistair Moffat, and Berthier A. Ribeiro-Neto (Eds.). ACM, 1007--1010.
[63]
Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-Thalmann. 2013. Time-aware point-of-interest recommendation. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’13), Gareth J. F. Jones, Paraic Sheridan, Diane Kelly, Maarten de Rijke, and Tetsuya Sakai (Eds.). ACM, 363--372.
[64]
J. Zhan, Chia-Lung Hsieh, I-Cheng Wang, Tsan-Sheng Hsu, Churn-Jung Liau, and Da-Wei Wang. 2010. Privacy-preserving collaborative recommender systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 40, 4 (July 2010), 472--476.

Cited By

View all
  • (2024)Multi-modal fusion approaches for tourism: A comprehensive survey of data-sets, fusion techniques, recent architectures, and future directionsComputers and Electrical Engineering10.1016/j.compeleceng.2024.109220116(109220)Online publication date: May-2024
  • (2023)Dynamic interest modeling via dual learning for recommendationMultimedia Tools and Applications10.1007/s11042-023-16945-y83:12(34373-34392)Online publication date: 26-Sep-2023
  • (2022)VBLSHInformation Sciences: an International Journal10.1016/j.ins.2021.11.006587:C(774-793)Online publication date: 1-Mar-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Information Systems
ACM Transactions on Information Systems  Volume 36, Issue 3
July 2018
402 pages
ISSN:1046-8188
EISSN:1558-2868
DOI:10.1145/3146384
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 September 2017
Accepted: 01 July 2017
Revised: 01 May 2017
Received: 01 January 2017
Published in TOIS Volume 36, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Contextual suggestion
  2. privacy
  3. recommender systems

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)4
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Multi-modal fusion approaches for tourism: A comprehensive survey of data-sets, fusion techniques, recent architectures, and future directionsComputers and Electrical Engineering10.1016/j.compeleceng.2024.109220116(109220)Online publication date: May-2024
  • (2023)Dynamic interest modeling via dual learning for recommendationMultimedia Tools and Applications10.1007/s11042-023-16945-y83:12(34373-34392)Online publication date: 26-Sep-2023
  • (2022)VBLSHInformation Sciences: an International Journal10.1016/j.ins.2021.11.006587:C(774-793)Online publication date: 1-Mar-2022
  • (2022)DSERExpert Systems with Applications: An International Journal10.1016/j.eswa.2022.118156208:COnline publication date: 1-Dec-2022
  • (2022)Kernel density estimation based factored relevance model for multi-contextual point-of-interest recommendationInformation Retrieval10.1007/s10791-021-09400-925:1(44-90)Online publication date: 1-Mar-2022
  • (2021)Systematic Review of Contextual Suggestion and Recommendation Systems for Sustainable e-TourismSustainability10.3390/su1315814113:15(8141)Online publication date: 21-Jul-2021
  • (2021)STARec: Adaptive Learning with Spatiotemporal and Activity Influence for POI RecommendationACM Transactions on Information Systems10.1145/348563140:4(1-40)Online publication date: 29-Nov-2021
  • (2021)Proportionality in Spatial Keyword SearchProceedings of the 2021 International Conference on Management of Data10.1145/3448016.3457309(885-897)Online publication date: 9-Jun-2021
  • (2021)Application of Intelligent Recommendation for Agricultural Information: A Systematic Literature ReviewIEEE Access10.1109/ACCESS.2021.31272019(153616-153632)Online publication date: 2021
  • (2021)Tag embedding based personalized point of interest recommendation systemInformation Processing and Management: an International Journal10.1016/j.ipm.2021.10269058:6Online publication date: 1-Nov-2021
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media