Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3154979.3155001acmotherconferencesArticle/Chapter ViewAbstractPublication PagesiccctConference Proceedingsconference-collections
research-article

Copy-Move Tampering Detection based on Local Binary Pattern Histogram Fourier Feature

Published: 24 November 2017 Publication History

Abstract

Copy-move is a popular image tampering technique, where one or more regions of an image are copied and pasted into another portion of the same image with an objective to cover a conceivably important region or duplicate some regions. In this paper, a block-based blind technique for copy-move tampering detection is given by extracting Local Binary Pattern Histogram Fourier Features from each overlapping block. Proposed method is tested on benchmarking CoMoFoD dataset. Experimental results show that proposed method not only reduces the time complexity of tampering detection but also robust against different post-processing attacks such as blurring, brightness change, contrast adjustment etc.

References

[1]
Timo Ahonen, Jiří Matas, Chu He, and Matti Pietikäinen. 2009. Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features. Springer Berlin Heidelberg, Berlin, Heidelberg, 61--70. https://doi.org/10.1007/978-3-642-02230-2_7
[2]
Amani Alahmadi, Muhammad Hussain, Hatim Aboalsamh, Ghulam Muhammad, George Bebis, and Hassan Mathkour. 2017. Passive detection of image forgery using DCT and local binary pattern. Signal, Image and Video Processing 11, 1 (01 Jan 2017), 81--88. https://doi.org/10.1007/s11760-016-0899-0
[3]
E. Ardizzone, A. Bruno, and G. Mazzola. 2010. Detecting multiple copies in tampered images. In 2010 IEEE International Conference on Image Processing. 2117--2120. https://doi.org/10.1109/ICIP.2010.5652490
[4]
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded Up Robust Features. Springer Berlin Heidelberg, Berlin, Heidelberg, 404--417. https://doi.org/10.1007/11744023_32
[5]
Reza Davarzani, Khashayar Yaghmaie, Saeed Mozaffari, and Meysam Tapak. 2013. Copy-move forgery detection using multiresolution local binary patterns. Forensic Science International 231, 1 (2013), 61--72. https://doi.org/10.1016/j.forsciint.2013.04.023
[6]
Yanping Huang, Wei Lu, Wei Sun, and Dongyang Long. 2011. Improved DCT-based detection of copy-move forgery in images. Forensic Science International 206, 1 (2011), 178--184. https://doi.org/10.1016/j.forsciint.2010.08.001
[7]
Rajib Kumar Jha, Badal Soni, and Kiyoharu Aizawa. 2013. Logo Extraction from Audio Signals by Utilization of Internal Noise. IETE Journal of Research 59, 3 (2013), 270--279. https://doi.org/10.4103/03772063.2013.10876505
[8]
Rajib Kumar Jha, Badal Soni, Rajlaxmi Chouhan, and Kiyoharu Aizawa. 2012. Improved Watermark Extraction from Audio Signals by Scaling of Internal Noise in DCT Domain. Springer Berlin Heidelberg, Berlin, Heidelberg, 235--243. https://doi.org/10.1007/978-3-642-30157-5_24
[9]
A. Kulkarni and S. Khan. 2010. An Efficient Method for Detection of Copy-Move Forgery Using Discrete Wavelet Transform. International Journal on Computer Science and Engineering (2010), 1801--1806.
[10]
Li Leida, Li Shushang, and Zhu Hancheng. 2013. An efficient scheme for detecting copy-move forged images by local binary patterns. Journal of Information Hiding and Multimedia Signal Processing 4, 1 (Nov. 2013), 46--56.
[11]
David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004), 91--110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
[12]
Ghulam Muhammad, Munner H. Al-Hammadi, Muhammad Hussain, and George Bebis. 2014. Image forgery detection using steerable pyramid transform and local binary pattern. Machine Vision and Applications 25, 4 (01 May 2014), 985--995. https://doi.org/10.1007/s00138-013-0547-4
[13]
G. Muhammad, M. H. Al-Hammadi, M. Hussain, A. M. Mirza, and G. Bebis. 2013. Copy move image forgery detection method using steerable pyramid transform and texture descriptor. In Eurocon 2013. 1586--1592. https://doi.org/10.1109/EUROCON.2013.6625188
[14]
G. Muhammad, M. Hussain, K. Khawaji, and G. Bebis. 2011. Blind copy move image forgery detection using dyadic undecimated wavelet transform. In 2011 17th International Conference on Digital Signal Processing (DSP). 1--6. https://doi.org/10.1109/ICDSP.2011.6004974
[15]
D. Tralic, I. Zupancic, S. Grgic, and M. Grgic. 2013. CoMoFoD-New database for copy-move forgery detection. In Proceedings ELMAR-2013. 49--54.
[16]
D. M. Uliyan, H. A. Jalab, and A. W. A. Wahab. 2015. Copy move image forgery detection using Hessian and center symmetric local binary pattern. In 2015 IEEE Conference on Open Systems (ICOS). 7--11. https://doi.org/10.1109/ICOS.2015.7377269
[17]
Xiang-yang Wang, Yu-nan Liu, Huan Xu, Pei Wang, and Hong-ying Yang. 2016. Robust copy--move forgery detection using quaternion exponent moments. Pattern Analysis and Applications (31 Oct 2016). https://doi.org/10.1007/s10044-016-0588-1
[18]
Y. Wo, K. Yang, G. Han, H. Chen, and W. Wu. 2017. Copy-move forgery detection based on multi-radius PCET. IET Image Processing 11, 2 (2017), 99--108. https://doi.org/10.1049/iet-ipr.2016.0229
[19]
Jianguo Zhang and Tieniu Tan. 2002. Brief review of invariant texture analysis methods. Pattern Recognition 35, 3 (2002), 735--747. https://doi.org/10.1016/S0031-3203(01)00074-7 Image/Video Communication.
[20]
G. Zhao, T. Ahonen, J. Matas, and M. Pietikainen. 2012. Rotation-Invariant Image and Video Description With Local Binary Pattern Features. IEEE Transactions on Image Processing 21, 4 (April 2012), 1465--1477. https://doi.org/10.1109/TIP.2011.2175739
[21]
Jie Zhao and Jichang Guo. 2013. Passive forensics for copy-move image forgery using a method based on DCT and SVD. Forensic Science International 233, 1 (2013), 158--166. https://doi.org/10.1016/j.forsciint.2013.09.013

Cited By

View all
  • (2022)ISD-SSD: image splicing detection by using modified single shot MultiBox detectorInternational Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP 2022)10.1117/12.2659381(25)Online publication date: 30-Nov-2022
  • (2022)A Detection Method for Copy-Move Forgery Attacks in Digital ImagesTENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)10.1109/TENCON55691.2022.9977490(1-6)Online publication date: 1-Nov-2022
  • (2022)Salient keypoint-based copy–move image forgery detectionAustralian Journal of Forensic Sciences10.1080/00450618.2021.201696455:3(331-354)Online publication date: 12-Jan-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICCCT-2017: Proceedings of the 7th International Conference on Computer and Communication Technology
November 2017
157 pages
ISBN:9781450353243
DOI:10.1145/3154979
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 November 2017

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Copy-move
  2. Image tampering
  3. LBP
  4. LBP-HF

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

ICCCT-2017

Acceptance Rates

ICCCT-2017 Paper Acceptance Rate 33 of 124 submissions, 27%;
Overall Acceptance Rate 33 of 124 submissions, 27%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)ISD-SSD: image splicing detection by using modified single shot MultiBox detectorInternational Conference on Artificial Intelligence and Intelligent Information Processing (AIIIP 2022)10.1117/12.2659381(25)Online publication date: 30-Nov-2022
  • (2022)A Detection Method for Copy-Move Forgery Attacks in Digital ImagesTENCON 2022 - 2022 IEEE Region 10 Conference (TENCON)10.1109/TENCON55691.2022.9977490(1-6)Online publication date: 1-Nov-2022
  • (2022)Salient keypoint-based copy–move image forgery detectionAustralian Journal of Forensic Sciences10.1080/00450618.2021.201696455:3(331-354)Online publication date: 12-Jan-2022
  • (2022)Local Binary Pattern Symmetric Centre Feature Extraction Method for Detection of Image ForgeryArtificial Intelligence and Data Science10.1007/978-3-031-21385-4_8(89-100)Online publication date: 14-Dec-2022
  • (2021)Exploring Color Models for Enhancement of Underwater ImageData Driven Approach Towards Disruptive Technologies10.1007/978-981-15-9873-9_26(325-336)Online publication date: 7-Apr-2021
  • (2020)Image Forgery Detection and Localization via a Reliability Fusion MapSensors10.3390/s2022666820:22(6668)Online publication date: 21-Nov-2020
  • (2020)An Improved Image Dehazing Technique using CLAHE and Guided Filter2020 7th International Conference on Signal Processing and Integrated Networks (SPIN)10.1109/SPIN48934.2020.9071296(902-907)Online publication date: Feb-2020
  • (2020)RETRACTED ARTICLE: LPG: a novel approach for medical forgery detection in image transmissionJournal of Ambient Intelligence and Humanized Computing10.1007/s12652-020-01932-012:5(4925-4941)Online publication date: 18-Apr-2020
  • (2019)Geometric transformation invariant block based copy-move forgery detection using fast and efficient hybrid local featuresJournal of Information Security and Applications10.1016/j.jisa.2019.01.00745:C(44-51)Online publication date: 1-Apr-2019
  • (2019)Copy–Move Attack Detection from Digital Images: An Image Forensic ApproachSmart Computing Paradigms: New Progresses and Challenges10.1007/978-981-13-9683-0_8(69-76)Online publication date: 1-Dec-2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media