Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3183713.3190657acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Cypher: An Evolving Query Language for Property Graphs

Published: 27 May 2018 Publication History

Abstract

The Cypher property graph query language is an evolving language, originally designed and implemented as part of the Neo4j graph database, and it is currently used by several commercial database products and researchers. We describe Cypher 9, which is the first version of the language governed by the openCypher Implementers Group. We first introduce the language by example, and describe its uses in industry. We then provide a formal semantic definition of the core read-query features of Cypher, including its variant of the property graph data model, and its ASCII Art graph pattern matching mechanism for expressing subgraphs of interest to an application. We compare the features of Cypher to other property graph query languages, and describe extensions, at an advanced stage of development, which will form part of Cypher 10, turning the language into a compositional language which supports graph projections and multiple named graphs.

References

[1]
H. Abelson et al. Revised report on the algorithmic language Scheme. Higher-Order and Symbolic Computation, 11(1):7--105, 1998.
[2]
S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
[3]
D. Alocci, J. Mariethoz, O. Horlacher, J. T. Bolleman, M. P. Campbell, and F. Lisacek. Property graph vs RDF triple store: A comparison on glycan substructure search. PLOS ONE, 10(12):1--17, 12 2015.
[4]
B. Amann and M. Scholl. Gram: a graph data model and query languages. In Proceedings of the ACM conference on Hypertext, pages 201--211. ACM, 1992.
[5]
R. Angles, M. Arenas, P. Barceló, P. Boncz, G. Fletcher, C. Gutiérrez, T. Lindaaker, M. Paradies, S. Plantikow, J. Sequeda, O. van Rest, and H. Voigt. G-CORE A Core for Future Graph Query Languages. In ACM SIGMOD, 2018.
[6]
R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgovc. Foundations of modern query languages for graph databases. ACM Comput. Surv., 50(5):68:1--68:40, Sept. 2017.
[7]
R. Angles and C. Gutiérrez. Survey of graph database models. ACM Comput. Surv., 40(1):1:1--1:39, 2008.
[8]
P. Barceló. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2013, New York, NY, USA - June 22 - 27, 2013, pages 175--188, 2013.
[9]
P. Barceló, L. Libkin, and J. L. Reutter. Querying regular graph patterns. Journal of the ACM, 61(1):8:1--8:54, 2014.
[10]
T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup language (XML). World Wide Web Journal, 2(4):27--66, 1997.
[11]
M. Cabra. How the ICIJ used Neo4j to unravel the Panama Papers. Neo4j Blog, May 2016. https://neo4j.com/blog/icij-neo4j-unravel-panama-papers/.
[12]
S. Chu, C. Wang, K. Weitz, and A. Cheung. Cosette: An automated prover for SQL. In CIDR, 2017.
[13]
S. Chu, K. Weitz, A. Cheung, and D. Suciu. HoTTSQL: Proving query rewrites with univalent SQL semantics. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 510--524. ACM, 2017.
[14]
M. Consens and A. Mendelzon. Graphlog: A visual formalism for real life recursion. In 9th ACM Symposium on Principles of Database Systems (PODS), pages 404--416, 1990.
[15]
B. Cook, A. Podelski, and A. Rybalchenko. Proving program termination. Commun. ACM, 54(5):88--98, 2011.
[16]
I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language supporting recursion. In SIGMOD Conference, pages 323--330. ACM Press, 1987.
[17]
G. Drakopoulos, A. Kanavos, and A. K. Tsakalidis. Evaluating twitter influence ranking with system theory. In Proceedings of the 12th International Conference on Web Information Systems and Technologies, WEBIST 2016, Volume 1, Rome, Italy, April 23-25, 2016, pages 113--120, 2016.
[18]
N. Francis, A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg, M. Schuster, P. Selmer, and A. Taylor. Formal semantics of the language cypher. CoRR, abs/1802.09984, 2018. https://arxiv.org/abs/1802.09984.
[19]
G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility and efficient search. In Data Engineering, 1993. Proceedings. Ninth International Conference on, pages 209--218. IEEE, 1993.
[20]
P. Guagliardo and L. Libkin. A formal semantics of SQL queries, its validation, and applications. PVLDB, 11(1):27--39, 2017.
[21]
A. Gubichev. Query Processing and Optimization in Graph Databases. PhD thesis, Technical University Munich, 2015.
[22]
Y. Gurevich and J. K. Huggins. The semantics of the C programming language. In Computer Science Logic, pages 274--308, 1992.
[23]
R. H. Güting. Graphdb: Modeling and querying graphs in databases. In VLDB, pages 297--308. Morgan Kaufmann, 1994.
[24]
M. Gyssens, J. Paredaens, J. V. den Bussche, and D. V. Gucht. A graph-oriented object database model. IEEE Trans. Knowl. Data Eng., 6(4):572--586, 1994.
[25]
N. Hawes, B. Barham, and C. Cifuentes. FrappÉ: Querying the linux kernel dependency graph. In Proceedings of the GRADES'15, GRADES'15, pages 4:1--4:6. ACM, 2015.
[26]
J. Hidders. Typing graph-manipulation operations. In ICDT, volume 2572 of Lecture Notes in Computer Science, pages 391--406. Springer, 2003.
[27]
H. H. Huang and H. Liu. Big data machine learning and graph analytics: Current state and future challenges. In 2014 IEEE International Conference on Big Data (Big Data), pages 16--17, 2014.
[28]
B. Iordanov. Hypergraphdb: A generalized graph database. In WAIM Workshops, volume 6185 of Lecture Notes in Computer Science, pages 25--36. Springer, 2010.
[29]
M. Junghanns, A. Petermann, K. Gómez, and E. Rahm. GRADOOP: scalable graph data management and analytics with hadoop. CoRR, abs/1506.00548, 2015.
[30]
M. Kay. XPath 2.0 programmer's reference. John Wiley & Sons, 2004.
[31]
A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. An analysis of ML typability. Journal of the ACM, 41(2):368--398, 1994.
[32]
N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. Int. J. Found. Comput. Sci., 13(4):571--586, 2002.
[33]
E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgovc. SPARQL with property paths. In The Semantic Web - ISWC 2015, pages 3--18, 2015.
[34]
J. Larriba-Pey, N. Martínez-Bazan, and D. Domínguez-Sal. Introduction to graph databases. In Reasoning Web, volume 8714 of Lecture Notes in Computer Science, pages 171--194. Springer, 2014.
[35]
M. Levene and G. Loizou. A graph-based data model and its ramifications. IEEE Trans. Knowl. Data Eng., 7(5):809--823, 1995.
[36]
M. Levene and A. Poulovassilis. The hypernode model and its associated query language. In Jerusalem Conference on Information Technology, pages 520--530. IEEE, 1990.
[37]
M. Levene and A. Poulovassilis. An object-oriented data model formalised through hypergraphs. Data Knowl. Eng., 6:205--234, 1991.
[38]
L. Libkin, W. Martens, and D. Vrgovc. Querying graphs with data. Journal of the ACM, 63(2):14:1--14:53, 2016.
[39]
A. Lysenko, I. A. Roznovat, M. Saqi, A. Mazein, C. J. Rawlings, and C. Auffray. Representing and querying disease networks using graph databases. BioData Mining, 9(1):23, Jul 2016.
[40]
S. Malik and L. Zhang. Boolean satisfiability from theoretical hardness to practical success. Commun. ACM, 52(8):76--82, 2009.
[41]
J. Marton, G. Szárnyas, and M. Búr. Model-driven engineering of an opencypher engine: Using graph queries to compile graph queries. In SDL Forum, volume 10567 of Lecture Notes in Computer Science, pages 80--98. Springer, 2017.
[42]
R. Milner, M. Tofte, and R. Harper. Definition of Standard ML. MIT Press, 1990.
[43]
J. C. Mitchell. Concepts in Programming Languages. Cambridge University Press, 2003.
[44]
G. Moerkotte and T. Neumann. Dynamic programming strikes back. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 539--552. ACM, 2008.
[45]
J. Mullen, S. J. Cockell, P. Woollard, and A. Wipat. An integrated data driven approach to drug repositioning using gene-disease associations. PLOS ONE, 11(5):1--24, 05 2016.
[46]
T. Neumann. Efficiently compiling efficient query plans for modern hardware. Proceedings of the VLDB Endowment, 4(9):539--550, 2011.
[47]
openCypher. Cypher Query Language Reference, Version 9, Nov. 2017. https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf.
[48]
Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object exchange across heterogeneous information sources. In ICDE, pages 251--260. IEEE Computer Society, 1995.
[49]
N. Papaspyrou. A Formal Semantics for the C Programming Language. PhD thesis, NTUA, 253pp, 1998.
[50]
M. Paradies. Graph pattern matching in SAP HANA. First openCypher Implementers Meeting, Feb. 2017. https://tinyurl.com/ycxu54pr.
[51]
A. Poulovassilis and M. Levene. A nested-graph model for the representation and manipulation of complex objects. ACM Trans. Inf. Syst., 12(1):35--68, 1994.
[52]
I. Robinson, J. Webber, and E. Eifrem. Graph databases. O'Reilly Media, 2013.
[53]
M. A. Rodriguez. The Gremlin graph traversal machine and language. In DBPL, pages 1--10. ACM, 2015.
[54]
P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. In Proceedings of the 1979 ACM SIGMOD international conference on Management of data, pages 23--34. ACM, 1979.
[55]
B. A. Steer, A. Alnaimi, M. A. B. F. G. Lotz, F. Cuadrado, L. M. Vaquero, and J. Varvenne. Cytosm: Declarative property graph queries without data migration. In Proceedings of the Fifth International Workshop on Graph Data-management Experiences &Systems, GRADES'17, pages 4:1--4:6, 2017.
[56]
O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a property graph query language. In GRADES, page 7. ACM, 2016.
[57]
M. Veanes, N. Tillmann, and J. de Halleux. Qex: Symbolic SQL query explorer. In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), pages 425--446, 2010.
[58]
W3C. SPARQL 1.1 Query Language, 2013. http://www.w3.org/TR/sparql11-query/.
[59]
W3C. RDF 1.1 Concepts and Abstract Syntax, Sept. 2014. http://www.w3.org/TR/rdf11-concepts/.
[60]
P. T. Wood. Query languages for graph databases. SIGMOD Record, 41(1):50--60, 2012.
[61]
B.-H. Yoon, S.-K. Kim, and S.-Y. Kim. Use of graph database for the integration of heterogeneous biological data. Genomics & informatics, pages 19--27, 03 2017.

Cited By

View all
  • (2024)A Macroscopic Exploration of the Ideoscape on Exosomes for Bone RegenerationOsteology10.3390/osteology40400134:4(159-178)Online publication date: 8-Oct-2024
  • (2024)Temporal Paths in Real-World Sensor NetworksISPRS International Journal of Geo-Information10.3390/ijgi1302003613:2(36)Online publication date: 24-Jan-2024
  • (2024)Real-Time Text-to-Cypher Query Generation with Large Language Models for Graph DatabasesFuture Internet10.3390/fi1612043816:12(438)Online publication date: 22-Nov-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data
May 2018
1874 pages
ISBN:9781450347037
DOI:10.1145/3183713
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 May 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cypher
  2. formal semantics
  3. formal specification
  4. graph databases
  5. property graphs
  6. query language

Qualifiers

  • Research-article

Conference

SIGMOD/PODS '18
Sponsor:

Acceptance Rates

SIGMOD '18 Paper Acceptance Rate 90 of 461 submissions, 20%;
Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)465
  • Downloads (Last 6 weeks)62
Reflects downloads up to 16 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Macroscopic Exploration of the Ideoscape on Exosomes for Bone RegenerationOsteology10.3390/osteology40400134:4(159-178)Online publication date: 8-Oct-2024
  • (2024)Temporal Paths in Real-World Sensor NetworksISPRS International Journal of Geo-Information10.3390/ijgi1302003613:2(36)Online publication date: 24-Jan-2024
  • (2024)Real-Time Text-to-Cypher Query Generation with Large Language Models for Graph DatabasesFuture Internet10.3390/fi1612043816:12(438)Online publication date: 22-Nov-2024
  • (2024)Incorporating Context into BIM-Derived Data—Leveraging Graph Neural Networks for Building Element ClassificationBuildings10.3390/buildings1402052714:2(527)Online publication date: 16-Feb-2024
  • (2024)GenAI-Assisted Database Deployment for Heterogeneous Indigenous–Native Ethnographic Research DataApplied Sciences10.3390/app1416741414:16(7414)Online publication date: 22-Aug-2024
  • (2024)PRSC: From PG to RDF and back, using schemasSemantic Web10.3233/SW-243675(1-41)Online publication date: 15-Oct-2024
  • (2024)A systematic overview of data federation systemsSemantic Web10.3233/SW-22320115:1(107-165)Online publication date: 12-Jan-2024
  • (2024)scribl: A system for the semantic capture of relationships in biological literatureJournal of Open Source Software10.21105/joss.066459:99(6645)Online publication date: Jul-2024
  • (2024)VQFT: A Visual Query Approach Based on Full-Text Search for Knowledge GraphsProceedings of the VLDB Endowment10.14778/3685800.368588417:12(4397-4400)Online publication date: 8-Nov-2024
  • (2024)DTGraph: Declarative Transformations of Property GraphsProceedings of the VLDB Endowment10.14778/3685800.368585117:12(4265-4268)Online publication date: 8-Nov-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media