Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3183713.3197386acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article
Public Access

Evaluating Interactive Data Systems: Workloads, Metrics, and Guidelines

Published: 27 May 2018 Publication History

Abstract

Highly interactive query interfaces have become a popular tool for ad-hoc data analysis and exploration, posing a new kind of workload to the underlying data infrastructure. Compared with traditional systems that are optimized for throughput or batched performance, ad-hoc and interactive data exploration systems focus more on user-centric interactivity, which raises a new class of performance challenges. Further, with the advent of new interaction devices~(e.g., touch, gesture) and different query interface paradigms~(e.g., sliders), maintaining interactive performance becomes even more challenging. Thus, when building interactive data systems, there is a clear need to articulate the design space.
In this tutorial, we will describe unique characteristics of interactive workloads for a variety of user input devices and query interfaces. We will catalog popular metrics based on an extensive survey of current literature. Through two case studies, we will not only walk through previously defined metrics using real-world user traces but also highlight where these defined metrics are inadequate. Further, we will introduce some new metrics that are required to capture a complete picture of interactivity. In each case study, we also demonstrate how the behavior analyses on users' trace and performance experiments can provide guidelines to help researchers and developers design better interactive data systems.

References

[1]
Crossfilter Library. http://square.github.io/crossfilter/.
[2]
IMDb. http://www.imdb.com/.
[3]
OMDb API - The Open Movie Database. http://www.omdbapi.com/.
[4]
TPC Benchmark. http://www.tpc.org/.
[5]
UCI Repository of Machine Learning Databases. https://archive.ics.uci.edu/ml/datasets.html.
[6]
Use Multi-Touch gestures on your Mac. https://support.apple.com/en-us/HT204895.
[7]
A. Abouzied, J. Hellerstein, and A. Silberschatz. Dataplay: interactive tweaking and example-driven correction of graphical database queries. In Proceedings of the 25th annual ACM symposium on User interface software and technology, pages 207--218. ACM, 2012.
[8]
W. Albert and T. Tullis. Measuring the user experience: collecting, analyzing, and presenting usability metrics. Newnes, 2013.
[9]
E. Bakke, D. Karger, and R. Miller. A spreadsheet-based user interface for managing plural relationships in structured data. In SIGCHI, 2011.
[10]
C. M. Barnum. Usability testing essentials: ready, set... test! Elsevier, 2010.
[11]
R. C. Basole, T. Clear, M. Hu, H. Mehrotra, and J. Stasko. Understanding interfirm relationships in business ecosystems with interactive visualization. TVCG, 2013.
[12]
S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania. Minimum-effort driven dynamic faceted search in structured databases. In CIKM, 2008.
[13]
L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for interactive visualization. 2016.
[14]
D. A. Bell, L. S. Deluca, D. J. Levinson, and R. Salem. Browser interaction for lazy loading operations, Dec. 15 2014. US Patent App. 14/570,430.
[15]
J. Bernard, N. Wilhelm, B. Krüger, T. May, T. Schreck, and J. Kohlhammer. Motionexplorer: Exploratory search in human motion capture data based on hierarchical aggregation. TVCG, 2013.
[16]
A. Biswas, S. Dutta, H.-W. Shen, and J. Woodring. An information-aware framework for exploring multivariate data sets. TVCG, 2013.
[17]
N. Cao, D. Gotz, J. Sun, and H. Qu. Dicon: Interactive visual analysis of multidimensional clusters. TVCG, 2011.
[18]
S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity while exploring massive time series. In VAST, 2008.
[19]
S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for histogram construction: How much is enough? In SIGMOD, 1998.
[20]
B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud serving systems with ycsb. In Socc, 2010.
[21]
K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example: An automatic query steering framework for interactive data exploration. In SIGMOD, 2014.
[22]
P. R. Doshi, E. A. Rundensteiner, and M. O. Ward. Prefetching for visual data exploration. In DASFAA. IEEE, 2003.
[23]
J. Faith. Targeted projection pursuit for interactive exploration of high-dimensional data sets. In IV, 2007.
[24]
L. Faulkner. Beyond the five-user assumption: Benefits of increased sample sizes in usability testing. Behavior Research Methods, 2003.
[25]
J.-D. Fekete and C. Plaisant. Interactive information visualization of a million items. In INFOVIS, 2002.
[26]
N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual exploration of big spatio-temporal urban data: A study of new york city taxi trips. TVCG, 2013.
[27]
D. Fisher, I. Popov, S. Drucker, et al. Trust me, i'm partially right: incremental visualization lets analysts explore large datasets faster. In SIGCHI, 2012.
[28]
P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of approximate histograms. In VLDB, 1997.
[29]
N. R. Gujarathi and A. A. Shah. Parameterized computed scrolling for navigation of structured data, 2015.
[30]
D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Approximating multi-dimensional aggregate range queries over real attributes. In SIGMOD Record, 2000.
[31]
J. Heer, M. Agrawala, and W. Willett. Generalized selection via interactive query relaxation. In SIGCHI, 2008.
[32]
T. Igarashi and K. Hinckley. Speed-dependent automatic zooming for browsing large documents. In UIST, 2000.
[33]
H. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making database systems usable. In SIGMOD, 2007.
[34]
W. Javed, S. Ghani, and N. Elmqvist. Gravnav: Using a gravity model for multi-scale navigation. In Advanced Visual Interfaces, 2012.
[35]
L. Jiang and A. Nandi. Snaptoquery: providing interactive feedback during exploratory query specification. VLDB, 2015.
[36]
N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and interactive cube exploration. In ICDE, 2014.
[37]
S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive visual specification of data transformation scripts. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 3363--3372. ACM, 2011.
[38]
A. Kashyap, V. Hristidis, and M. Petropoulos. Facetor: cost-driven exploration of faceted query results. In CIKM, 2010.
[39]
A. Kashyap, V. Hristidis, M. Petropoulos, and S. Tavoulari. Effective navigation of query results based on concept hierarchies. TKDE, 2011.
[40]
M. Kaul, B. Yang, and C. S. Jensen. Building accurate 3d spatial networks to enable next generation intelligent transportation systems. In MDM, 2013.
[41]
D. A. Keim. Information visualization and visual data mining. IEEE transactions on Visualization and Computer Graphics, 2002.
[42]
A. Key, B. Howe, D. Perry, and C. Aragon. Vizdeck: self-organizing dashboards for visual analytics. In Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data, pages 681--684. ACM, 2012.
[43]
M. Khan, L. Xu, A. Nandi, and J. M. Hellerstein. Data tweening: incremental visualization of data transforms. Proceedings of the VLDB Endowment, 10(6):661--672, 2017.
[44]
R. Kosara, F. Bendix, and H. Hauser. Parallel sets: Interactive exploration and visual analysis of categorical data. TVCG, 2006.
[45]
S. Kullback. Information theory and statistics. Courier Corporation, 1997.
[46]
H. Lam, D. Russell, D. Tang, and T. Munzner. Session viewer: Visual exploratory analysis of web session logs. In VAST, 2007.
[47]
J. Lazar, J. H. Feng, and H. Hochheiser. Research methods in human-computer interaction. John Wiley & Sons, 2010.
[48]
Y. Li, H. Yang, and H. Jagadish. Nalix: A generic natural language search environment for xml data. TODS, 2007.
[49]
L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for real-time exploration of spatiotemporal datasets. TVCG, 2013.
[50]
B. Liu and H. Jagadish. A spreadsheet algebra for a direct data manipulation query interface. In ICDE, 2009.
[51]
Z. Liu and J. Heer. The effects of interactive latency on exploratory visual analysis. TVCG, 2014.
[52]
Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Querying of Big Data. EuroVis, 2013.
[53]
A. R. Martin and M. O. Ward. High dimensional brushing for interactive exploration of multivariate data. In Visualization, 1995.
[54]
P. McLachlan, T. Munzner, E. Koutsofios, and S. North. Liverac: interactive visual exploration of system management time-series data. In SIGCHI, 2008.
[55]
F. Moussavi. Hybrid inertial and touch sensing input device, Feb. 18 2010. US Patent App. 12/192,889.
[56]
A. Nandi, L. Jiang, and M. Mandel. Gestural query specification. VLDB, 2013.
[57]
N. Nourbakhsh, Y. Wang, F. Chen, and R. A. Calvo. Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In Proceedings of the 24th Australian Computer-Human Interaction Conference, pages 420--423. ACM, 2012.
[58]
C. Plaisant. The challenge of information visualization evaluation. In AVI, 2004.
[59]
V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved histograms for selectivity estimation of range predicates. In SIGMOD Record, 1996.
[60]
J. M. Rzeszotarski and A. Kittur. Kinetica: naturalistic multi-touch data visualization. In CHI, 2014.
[61]
R. G. Saadé and C. A. Otrakji. First impressions last a lifetime: effect of interface type on disorientation and cognitive load. Computers in human behavior, 23(1):525--535, 2007.
[62]
A. Satyanarayan and J. Heer. Lyra: An interactive visualization design environment. In Computer Graphics Forum, 2014.
[63]
J. Seo and B. Shneiderman. A rank-by-feature framework for interactive exploration of multidimensional data. Information visualization, 2005.
[64]
B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In IEEE Symposium on-Visual Languages, 1996.
[65]
M. Singh, A. Nandi, and H. Jagadish. Skimmer: rapid scrolling of relational query results. In SIGMOD, 2012.
[66]
J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2):257--285, 1988.
[67]
F. Tauheed, T. Heinis, F. Schürmann, H. Markram, and A. Ailamaki. Scout: prefetching for latent structure following queries. VLDB, 2012.
[68]
L. F. Van Dillen, D. J. Heslenfeld, and S. L. Koole. Tuning down the emotional brain: an fmri study of the effects of cognitive load on the processing of affective images. Neuroimage, 45(4):1212--1219, 2009.
[69]
J. S. Vitter, M. Wang, and B. Iyer. Data cube approximation and histograms via wavelets. In CIKM, 1998.
[70]
C. Weaver. Multidimensional visual analysis using cross-filtered views. In VAST, 2008.
[71]
J. Wei, Z. Shen, N. Sundaresan, and K.-L. Ma. Visual cluster exploration of web clickstream data. In VAST, 2012.
[72]
L. Wilkinson. The grammar of graphics. Springer Science & Business Media, 2006.
[73]
W. Willett, J. Heer, and M. Agrawala. Scented widgets: Improving navigation cues with embedded visualizations. TVCG, 2007.
[74]
J. Woodring and H.-W. Shen. Multiscale time activity data exploration via temporal clustering visualization spreadsheet. TVCG, 2009.
[75]
E. Wu, L. Jiang, L. Xu, and A. Nandi. Graphical perception in animated bar charts. In arXiv.
[76]
D. Yang, Z. Guo, E. A. Rundensteiner, and M. O. Ward. Clues: a unified framework supporting interactive exploration of density-based clusters in streams. In CIKM, 2011.
[77]
D. Yang, E. A. Rundensteiner, and M. O. Ward. Analysis guided visual exploration of multivariate data. In Visual Analytics Science and Technology, 2007. VAST 2007. IEEE Symposium on, pages 83--90. IEEE, 2007.
[78]
J. Yang, A. Patro, S. Huang, N. Mehta, M. O. Ward, and E. A. Rundensteiner. Value and relation display for interactive exploration of high dimensional datasets. In INFOVIS, 2004.
[79]
J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner. Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets. In INFOVIS, 2003.
[80]
J. S. Yi, Y. ah Kang, and J. Stasko. Toward a deeper understanding of the role of interaction in information visualization. TVCG, 2007.
[81]
X. Yuan, D. Ren, Z. Wang, and C. Guo. Dimension projection matrix/tree: Interactive subspace visual exploration and analysis of high dimensional data. TVCG, 2013.
[82]
Z. Zhang, K. T. McDonnell, and K. Mueller. A network-based interface for the exploration of high-dimensional data spaces. In PacificVis, 2012.

Cited By

View all
  • (2023)Camera-First Form FillingProceedings of the Workshop on Human-In-the-Loop Data Analytics10.1145/3597465.3605218(1-7)Online publication date: 18-Jun-2023
  • (2022)Visual exploration of rating datasets and user groupsFuture Generation Computer Systems10.1016/j.future.2019.12.011105:C(547-561)Online publication date: 21-Apr-2022
  • (2020)Database Benchmarking for Supporting Real-Time Interactive Querying of Large DataProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389732(1571-1587)Online publication date: 11-Jun-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGMOD '18: Proceedings of the 2018 International Conference on Management of Data
May 2018
1874 pages
ISBN:9781450347037
DOI:10.1145/3183713
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 May 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. benchmark
  2. databases
  3. human-computer interaction

Qualifiers

  • Research-article

Funding Sources

Conference

SIGMOD/PODS '18
Sponsor:

Acceptance Rates

SIGMOD '18 Paper Acceptance Rate 90 of 461 submissions, 20%;
Overall Acceptance Rate 785 of 4,003 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)114
  • Downloads (Last 6 weeks)14
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Camera-First Form FillingProceedings of the Workshop on Human-In-the-Loop Data Analytics10.1145/3597465.3605218(1-7)Online publication date: 18-Jun-2023
  • (2022)Visual exploration of rating datasets and user groupsFuture Generation Computer Systems10.1016/j.future.2019.12.011105:C(547-561)Online publication date: 21-Apr-2022
  • (2020)Database Benchmarking for Supporting Real-Time Interactive Querying of Large DataProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389732(1571-1587)Online publication date: 11-Jun-2020
  • (2020)Marviq: Quality-Aware Geospatial Visualization of Range-Selection Queries Using MaterializationProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389730(67-82)Online publication date: 11-Jun-2020
  • (2020)Music Creation by ExampleProceedings of the 2020 CHI Conference on Human Factors in Computing Systems10.1145/3313831.3376514(1-13)Online publication date: 21-Apr-2020
  • (2020)User Group Analytics Survey and Research OpportunitiesIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2019.291365132:10(2040-2059)Online publication date: 1-Oct-2020
  • (2019)Deterministic routing between layout abstractions for multi-scale classification of visually rich documentsProceedings of the 28th International Joint Conference on Artificial Intelligence10.5555/3367471.3367508(3360-3366)Online publication date: 10-Aug-2019
  • (2019)ICARUSProceedings of the VLDB Endowment10.14778/3275366.328497011:13(2263-2276)Online publication date: 17-Jan-2019
  • (2019)UserDEVProceedings of the Workshop on Human-In-the-Loop Data Analytics10.1145/3328519.3329128(1-8)Online publication date: 5-Jul-2019
  • (2019)TransformerProceedings of the 24th International Conference on Intelligent User Interfaces10.1145/3301275.3302269(485-496)Online publication date: 17-Mar-2019
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media