Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On Measuring Bias in Online Information

Published: 22 February 2018 Publication History

Abstract

Bias in online information has recently become a pressing issue, with search engines, social networks and recommendation services being accused of exhibiting some form of bias. In this vision paper, we make the case for a systematic approach towards measuring bias. To this end, we discuss formal measures for quantifying the various types of bias, we outline the system components necessary for realizing them, and we highlight the related research challenges and open problems.

References

[1]
G. Adomavicius, J. Bockstedt, C. Shawn, and J. Zhang. De-biasing user preference ratings in recommender systems, volume 1253, pages 2--9. CEUR-WS, 2014.
[2]
S. Barocas and A. D. Selbst. Big Data's Disparate Impact. SSRN eLibrary, 2014.
[3]
E. Bozdag. Bias in algorithmic filtering and personalization. Ethics and Inf. Technol.
[4]
C. Budak, S. Goel, and J. M. Rao. Fair and balanced? quantifying media bias through crowdsourced content analysis. Public Opinion Quarterly, 80(S1).
[5]
A. Chakraborty, S. Ghosh, N. Ganguly, and K. P. Gummadi. Can trending news stories create coverage bias? on the impact of high content churn in online news media. In Computation and Journalism Symposium, 2015.
[6]
S. Corbett-Davies, E. Pierson, A. Feller, S. Goel, and A. Huq. Algorithmic decision making and the cost of fairness. CoRR, abs/1701.08230, 2017.
[7]
A. Datta, M. C. Tschantz, and A. Datta. Automated experiments on ad privacy settings. Proceedings on Privacy Enhancing Technologies, 2015(1):92--112, 2015.
[8]
M. Drosou and E. Pitoura. Search result diversification. SIGMOD Record, 39(1):41--47, 2010.
[9]
C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. S. Zemel. Fairness through awareness. In ITCS.
[10]
R. Epstein and R. E. Robertson. The search engine manipulation effect (seme) and its possible impact on the outcomes of elections. PNAS, 112(20), 2015.
[11]
M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and S. Venkatasubramanian. Certifying and removing disparate impact. In KDD, pages 259--268, 2015.
[12]
M. Ferreira, M. B. Zafar, and K. P. Gummadi. The case for temporal transparency: Detecting policy change events in black-box decision making systems. arXiv preprint arXiv:1610.10064, 2016.
[13]
B. Fish, J. Kun, and ´A. D. Lelkes. A confidence-based approach for balancing fairness and accuracy. In SDM, pages 144--152, 2016.
[14]
S. Fortunato, A. Flammini, F. Menczer, and A. Vespignani. Topical interests and the mitigation of search engine bias. Proceedings of the National Academy of Sciences, 103(34):12684--12689, 2006.
[15]
S. Hajian, F. Bonchi, and C. Castillo. Algorithmic bias: From discrimination discovery to fairness-aware data mining. In KDD, pages 2125--2126. ACM, 2016.
[16]
A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy, D. Lazer, A. Mislove, and C. Wilson. Measuring personalization of web search. In WWW, pages 527--538. ACM, 2013.
[17]
A. Hannak, G. Soeller, D. Lazer, A. Mislove, and C. Wilson. Measuring price discrimination and steering on e-commerce web sites. In Internet Measurement Conference, pages 305--318, 2014.
[18]
M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. In NIPS, pages 3315--3323, 2016.
[19]
W. House. Big data: A report on algorithmic systems, opportunity, and civil rights. Washington, DC: Executive Office of the President, White House, 2016.
[20]
D. Koutra, P. N. Bennett, and E. Horvitz. Events and controversies: Influences of a shocking news event on information seeking. In WWW, pages 614--624, 2015.
[21]
J. Kulshrestha, M. Eslami, J. Messias, M. B. Zafar, S. Ghosh, I. Shibpur, I. K. P. Gummadi, and K. Karahalios. Quantifying search bias: Investigating sources of bias for political searches in social media. In CSCW, 2017.
[22]
Z. Liu and I. Weber. Is twitter a public sphere for online conflicts? a cross-ideological and cross-hierarchical look. In SocInfo, pages 336--347, 2014.
[23]
A. Mowshowitz and A. Kawaguchi. Measuring search engine bias. Information Processing&Management, 41(5):1193--1205, 2005.
[24]
A. Olteanu, C. Castillo, F. Diaz, and E. Kiciman. Social data: Biases, methodological pitfalls, and ethical boundaries. In SSNR Preprint, 2017.
[25]
A. Romei and S. Ruggieri. A multidisciplinary survey on discrimination analysis. The Knowledge Engineering Review, 29(05):582--638, 2014.
[26]
C. Sandvig, K. Hamilton, K. Karahalios, and C. Langbort. Auditing algorithms: Research methods for detecting discrimination on internet platforms. Data and discrimination: converting critical concerns into productive inquiry, 2014.
[27]
J. Stoyanovich, S. Abiteboul, and G. Miklau. Data, responsibly: Fairness, neutrality and transparency in data analysis. In EDBT, 2016.
[28]
L. Sweeney. Discrimination in online ad delivery. Queue, 11(3):10, 2013.
[29]
L. Vaughan and M. Thelwall. Search engine coverage bias: evidence and possible causes. Information processing&management, 40(4):693--707, 2004.
[30]
I. Weber, V. R. K. Garimella, and A. Batayneh. Secular vs. islamist polarization in egypt on twitter. In ASONAM, pages 290--297, 2013.
[31]
F. M. F. Wong, C. W. Tan, S. Sen, and M. Chiang. Quantifying political leaning from tweets and retweets. ICWSM, 13:640--649, 2013.
[32]
K. Yang and J. Stoyanovich. Measuring fairness in ranked outputs. In SSDM, pages 22:1--22:6, 2017.
[33]
M. B. Zafar, K. P. Gummadi, and C. Danescu-Niculescu-Mizil. Message impartiality in social media discussions. In ICWSM.
[34]
M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Learning fair classifiers. arXiv preprint arXiv:1507.05259, 2015.
[35]
M. B. Zafar, I. Valera, M. G. Rodriguez, and K. P. Gummadi. Fairness beyond disparate treatment&disparate impact: Learning classification without disparate mistreatment. In WWW, 2017.
[36]
M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. A. Baeza-Yates. Fa*ir: A fair top-k ranking algorithm. In CIKM, 2017.
[37]
J. Zhao, T. Wang, M. Yatskar, V. Ordonez, and K. Chang. Men also like shopping: Reducing gender bias amplification using corpus-level constraints. CoRR, abs/1707.09457, 2017.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 46, Issue 4
December 2017
48 pages
ISSN:0163-5808
DOI:10.1145/3186549
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 February 2018
Published in SIGMOD Volume 46, Issue 4

Check for updates

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)41
  • Downloads (Last 6 weeks)7
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Fairness in Machine Learning: A SurveyACM Computing Surveys10.1145/361686556:7(1-38)Online publication date: 9-Apr-2024
  • (2023)Impact of Quality Factors on Platform-based DecisionsJournal of Society of Korea Industrial and Systems Engineering10.11627/jksie.2023.46.3.10946:3(109-122)Online publication date: 30-Sep-2023
  • (2023)Equitable Top-k Results for Long Tail DataProceedings of the ACM on Management of Data10.1145/36267271:4(1-24)Online publication date: 12-Dec-2023
  • (2023)Investigating the Influence of Legal Case Retrieval Systems on Users' Decision ProcessProceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval in the Asia Pacific Region10.1145/3624918.3625321(169-175)Online publication date: 26-Nov-2023
  • (2023)A Versatile Framework for Evaluating Ranked Lists in Terms of Group Fairness and RelevanceACM Transactions on Information Systems10.1145/358976342:1(1-36)Online publication date: 30-May-2023
  • (2023)A Practical Online Allocation Framework at Industry-scale in Constrained RecommendationProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591835(3270-3274)Online publication date: 19-Jul-2023
  • (2023)Personalised Filter Bias with Google and DuckDuckGo: An Exploratory StudyArtificial Intelligence and Cognitive Science10.1007/978-3-031-26438-2_39(502-513)Online publication date: 23-Feb-2023
  • (2023)Measuring the Burden of (Un)fairness Using CounterfactualsMachine Learning and Principles and Practice of Knowledge Discovery in Databases10.1007/978-3-031-23618-1_27(402-417)Online publication date: 31-Jan-2023
  • (2022)Implications of Data Anonymization on the Statistical Evidence of DisparityManagement Science10.1287/mnsc.2021.402868:4(2600-2618)Online publication date: 1-Apr-2022
  • (2022)FairRankVis: A Visual Analytics Framework for Exploring Algorithmic Fairness in Graph Mining ModelsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311485028:1(368-377)Online publication date: Jan-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media