Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3208976.3208985acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Computing Free Distances of Idempotent Convolutional Codes

Published: 11 July 2018 Publication History

Abstract

We show that, for cyclic convolutional codes, it is possible to compute a sequence of positive integers, called cyclic column distances, which presents a more regular behavior than the classical column distances sequence. We then design an algorithm for the computation of the free distance based on the calculation of this cyclic column distances sequence.

References

[1]
A. Betten, M. Braun, H. Fripertinger, A. Kerber, A. Kohnert, and A. Wassermann. 2006. Error-Correcting Linear Codes. Algorithms and Computation in Mathematics, Vol. Vol. 18. Springer.
[2]
D. J. Costello Jr. 1969. A construction technique for random-error-correcting convolutional codes. IEEE Transactions on Information Theory Vol. 15, 5 (September. 1969), 631--636.
[3]
D. J. Costello Jr. 1974. Free distance bounds for convolutional codes. IEEE Transactions on Information Theory Vol. 20, 3 (1974), 356--365.
[4]
S. Estrada, J. R. Garc'ıa-Rozas, J. Peralta, and E. Sánchez-Garc'ıa. 2008. Group convolutional codes. Advances in Mathematics of Communications Vol. 2, 1 (2008), 83--94.
[5]
G. D. Forney Jr. 1970. Convolutional codes I: Algebraic structure. IEEE Transactions on Information Theory Vol. 16, 6 (1970), 720--738.
[6]
H. Gluesing-Luerssen and W. Schmale. 2004. On Cyclic Convolutional Codes. Acta Applicandae Mathematicae Vol. 82, 2 (2004), 183--237.
[7]
J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2015. Separable Automorphisms on Matrix Algebras over Finite Field Extensions: Applications to Ideal Codes. In Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC '15). ACM, New York, NY, USA, 189--195.
[8]
J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2016 a. Convolutional codes with a matrix-algebra word ambient. Advances in Mathematics of Communications Vol. 10, 1 (2016), 29--43.
[9]
J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2016 b. A New Perspective of Cyclicity in Convolutional Codes. IEEE Transactions on Information Theory Vol. 62, 5 (2016), 2702 -- 2706.
[10]
J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2017 a. Computing separability elements for the sentence-ambient algebra of split ideal codes. Journal of Symbolic Computation Vol. 83 (2017), 211--227.
[11]
J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro. 2017 b. Ideal codes over separable ring extensions. IEEE Transactions on Information Theory Vol. 63, 5 (May. 2017), 2796 -- 2813.
[12]
W. C. Huffman and V. Pless. 2010. Fundamentals of Error-Correcting Codes. Cambridge University Press.
[13]
R. Johannesson and K. Sh. Zigangirov. 1999. Fundamentals of Convolutional Coding. Wiley-IEEE Press. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0780334833,miniSiteCd-IEEE2.html
[14]
S. Lin and D. J. Costello Jr. 2004. Error Control Coding, Second Edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
[15]
S. R. López-Permouth and S. Szabo. 2013. Convolutional codes with additional algebraic structure. Journal of Pure and Applied Algebra Vol. 217, 5 (2013), 958 -- 972.
[16]
P. Piret. 1976. Structure and constructions of cyclic convolutional codes. IEEE Transactions on Information Theory Vol. 22, 2 (1976), 147--155.
[17]
C. Roos. 1979. On the Structure of Convolutional and Cyclic Convolutional Codes. IEEE Transactions on Information Theory Vol. IT-25, 6 (1979), 676--683.
[18]
J. Rosenthal, J. M. Schumacher, and E. V. York. 1996. On behaviors and convolutional codes. IEEE Transactions on Information Theory Vol. 42, 6 (1996), 1881--1891.
[19]
J. Rosenthal and R. Smarandache. 1999. Maximum distance separable convolutional codes. Applicable Algebra in Engeneering, Communication and Computing, Vol. 10, 1 (1999), 15--32.
[20]
The Sage Developers. 2017. SageMath, the Sage Mathematics Software System (Version 7.4). http://www.sagemath.org/
[21]
A. Vardy. 1997. The Intractability of Computing the Minimum Distance of a Code. IEEE Transactions on Information Theory Vol. 46, 6 (1997), 1757 -- 1766.

Cited By

View all
  • (2020)Peterson–Gorenstein–Zierler algorithm for differential convolutional codesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-020-00464-6Online publication date: 10-Oct-2020

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '18: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
July 2018
418 pages
ISBN:9781450355506
DOI:10.1145/3208976
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Brouwer-Zimmermann algorithm
  2. cyclic convolutional code
  3. free distance

Qualifiers

  • Research-article

Funding Sources

  • AEI/FEDER, UE

Conference

ISSAC '18

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)1
Reflects downloads up to 21 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Peterson–Gorenstein–Zierler algorithm for differential convolutional codesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-020-00464-6Online publication date: 10-Oct-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media