Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3208976.3208992acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Generalized Hermite Reduction, Creative Telescoping and Definite Integration of D-Finite Functions

Published: 11 July 2018 Publication History

Abstract

Hermite reduction is a classical algorithmic tool in symbolic integration. It is used to decompose a given rational function as a sum of a function with simple poles and the derivative of another rational function. We extend Hermite reduction to arbitrary linear differential operators instead of the pure derivative, and develop efficient algorithms for this reduction. We then apply the generalized Hermite reduction to the computation of linear operators satisfied by single definite integrals of D-finite functions of several continuous or discrete parameters. The resulting algorithm is a generalization of reduction-based methods for creative telescoping.

References

[1]
S. A. Abramov. EG-eliminations. J. Differ. Equations Appl., 5(4--5):393--433, 1999.
[2]
S. A. Abramov and K. Y. Kvashenko. Fast algorithms for the search of the rational solutions of linear differential equations with polynomial coefficients. In ISSAC'91, pages 267--270, 1991.
[3]
S. A. Abramov and M. Petkovšek. Minimal decomposition of indefinite hypergeometric sums. In ISSAC'01, pages 7--14. ACM, 2001.
[4]
S. A. Abramov and M. van Hoeij. Integration of solutions of linear functional equations. Integral Transform. Spec. Funct., 8(1--2):3--12, 1999.
[5]
K. Adjamagbo. Sur l'effectivité du lemme du vecteur cyclique. C. R. Acad. Sci. Paris Sér. I Math., 306(13):543--546, 1988.
[6]
A. Adolphson. An index theorem for p-adic differential operators. Trans. Amer. Math. Soc., 216:279--293, 1976.
[7]
G. Almkvist and D. Zeilberger. The method of differentiating under the integral sign. J. Symbolic Comput., 10(6):571--591, 1990.
[8]
M. A. Barkatou. On rational solutions of systems of linear differential equations. J. Symbolic Comput., 28(4--5):547--567, 1999.
[9]
A. Bostan, S. Chen, F. Chyzak, and Z. Li. Complexity of creative telescoping for bivariate rational functions. In ISSAC'10, pages 203--210. ACM, 2010.
[10]
A. Bostan, S. Chen, F. Chyzak, Z. Li, and G. Xin. Hermite reduction and creative telescoping for hyperexponential functions. In ISSAC'13, pages 77--84. ACM, 2013.
[11]
A. Bostan, L. Dumont, and B. Salvy. Efficient algorithms for mixed creative telescoping. In ISSAC'16, pages 127--134. ACM, 2016.
[12]
A. Bostan, P. Lairez, and B. Salvy. Creative telescoping for rational functions using the Griffiths-Dwork method. In ISSAC'13, pages 93--100. ACM, 2013.
[13]
S. Chen, H. Huang, M. Kauers, and Z. Li. A modified Abramov-Petkovšek reduction and creative telescoping for hypergeometric terms. In ISSAC'15, pages 117--124. ACM, 2015.
[14]
S. Chen, M. Kauers, and C. Koutschan. Reduction-based creative telescoping for algebraic functions. In ISSAC'16, pages 175--182. ACM, 2016.
[15]
S. Chen, M. Kauers, and M. F. Singer. Telescopers for rational and algebraic functions via residues. In ISSAC'12, pages 130--137. ACM, 2012.
[16]
S. Chen, M. van Hoeij, M. Kauers, and C. Koutschan. Reduction-based creative telescoping for fuchsian D-finite functions. J. Symbolic Comput., 85:108--127, 2018.
[17]
R. C. Churchill and J. J. Kovacic. Cyclic vectors. In Differential Algebra and Related Topics, pages 191--218. World Scientific, 2002.
[18]
F. Chyzak. Fonctions holonomes en calcul formel. PhD Thesis, École polytechnique, 1998.
[19]
F. Chyzak. An extension of Zeilberger's fast algorithm to general holonomic functions. Discrete Math., 217(1--3):115--134, 2000.
[20]
F. Chyzak. The ABC of Creative Telescoping - Algorithms, Bounds, Complexity. Accreditation to supervise research (HDR), École polytechnique, Apr. 2014.
[21]
F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Comput., 26(2):187--227, 1998.
[22]
J. H. Davenport. The Risch differential equation problem. SIAM J. Comput., 15(4):903--918, 1986.
[23]
L. E. Dickson. Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors. Amer. J. Math., 35(4):413--422, 1913.
[24]
J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symbolic Comput., 16(4):329--344, 1993.
[25]
L. Fuchs. Die Periodicitätsmoduln der hyperelliptischen Integrale als Functionen eines Parameters aufgefasst. J. Reine Angew. Math., 71:91--127, 1870.
[26]
K. Geddes, H. Le, and Z. Li. Differential rational normal forms and a reduction algorithm for hyperexponential functions. In ISSAC'04, pages 183--190, 2004.
[27]
C. Hermite. Sur l'intégration des fractions rationnelles. Ann. Sci. École Norm. Sup. (2), 1:215--218, 1872.
[28]
H. Huang. New bounds for hypergeometric creative telescoping. In ISSAC'16, pages 279--286. ACM, 2016.
[29]
E. L. Ince. Ordinary Differential Equations. Dover Publications, New York, 1944.
[30]
C. Koutschan. Examplesv11.nb. On the Holonomic Functions web page.
[31]
C. Koutschan. Advanced Applications of the Holonomic Systems Approach. PhD thesis, RISC-Linz, 2009.
[32]
P. Lairez. Computing periods of rational integrals. Math. Comp., 85(300):1719--1752, 2016.
[33]
J. Liouville. Second mémoire sur la détermination des intégrales dont la valeur est algébrique. Journal de l'École polytechnique, 14:149--193, 1833.
[34]
L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373--378, 1988.
[35]
B. Malgrange. Sur les points singuliers des équations différentielles. Enseignement Math. (2), 20:147--176, 1974.
[36]
P. Monsky. Finiteness of de Rham cohomology. Amer. J. Math., 94:237--245, 1972.
[37]
M. Ostrogradsky. De l'intégration des fractions rationnelles. Bull. classe phys.-math. Acad. Impériale des Sciences Saint-Pétersbourg, 4:145--167, 286--300, 1845.
[38]
É. Picard. Sur les intégrales doubles de fonctions rationnelles dont tous les résidus sont nuls. Bull. Sci. Math. (2), 26:143--152, 1902.
[39]
É. Picard and G. Simart. Théorie des fonctions algébriques de deux variables indépendantes, volume I (1897) and II (1906). Gauthier-Villars et fils, 1897.
[40]
A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev. Integrals and series. Vol. 2. Gordon & Breach Science Publishers, NY, second edition, 1988. Special functions.
[41]
M. S. Rezaoui. Indice polynomial d'une matrice d'opérateurs différentiels. C. R. Acad. Sci. Paris Sér. I Math., 332(6):505--508, 2001.
[42]
N. Takayama. An approach to the zero recognition problem by Buchberger algorithm. Journal of Symbolic Computation, 14:265--282, 1992.
[43]
B. M. Trager. Integration of Algebraic Functions. PhD Thesis, MIT, 1984.
[44]
J. van der Hoeven. Constructing reductions for creative telescoping, 2017. Technical Report,
[45]
M. van der Put and M. Reversat. A local-global problem for linear differential equations. Pacific J. Math., 238(1):171--199, 2008.
[46]
M. van der Put and M. F. Singer. Galois theory of linear differential equations, volume 328 of Grundlehren der Mathematischen Wissenschaften. Springer, 2003.
[47]
D. Y. Y. Yun. On square-free decompositions algorithms. In Proc. 1976 ACM Symposium on Symbolic and Algebraic Computation, pages 26--35. ACM, 1976.
[48]
D. Y. Y. Yun. Fast algorithm for rational function integration. In Proc. IFIP'77 Congr., Toronto, Ont., pages 493--498. North-Holland, 1977.

Cited By

View all

Index Terms

  1. Generalized Hermite Reduction, Creative Telescoping and Definite Integration of D-Finite Functions

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISSAC '18: Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
    July 2018
    418 pages
    ISBN:9781450355506
    DOI:10.1145/3208976
    © 2018 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 July 2018

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. creative telescoping
    2. d-finite functions
    3. hermite reduction
    4. symbolic integration

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISSAC '18

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 20 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media