Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Subquadratic Algorithms for the Diameter and the Sum of Pairwise Distances in Planar Graphs

Published: 07 December 2018 Publication History

Abstract

In this article, we show how to compute for n-vertex planar graphs in O(n11/6 polylog(n)) expected time the diameter and the sum of the pairwise distances. The algorithms work for directed graphs with real weights and no negative cycles. In O(n15/8 polylog(n)) expected time, we can also compute the number of pairs of vertices at distances smaller than a given threshold. These are the first algorithms for these problems using time O(nc) for some constant c< 2, even when restricted to undirected, unweighted planar graphs.

References

[1]
Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. 2016. Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 377--391. Retrieved from http://dl.acm.org/citation.cfm?id&equals;2884435.2884463.
[2]
Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel Sumazin. 2005. Lowest common ancestors in trees and directed acyclic graphs. J. Algor. 57, 2 (2005), 75--94. Retrieved from
[3]
Cecilia Bohler, Rolf Klein, and Chih-Hung Liu. 2014. Forest-like abstract Voronoi diagrams in linear time. In Proceedings of the 26th Canadian Conference on Computational Geometry (CCCG’14). Retrieved from http://www.cccg.ca/proceedings/2014.
[4]
J. A. Bondy and U. S. R. Murty. 2008. Graph Theory. Graduate texts in mathematics, Vol. 244. Springer.
[5]
Sergio Cabello. 2012. Many distances in planar graphs. Algorithmica 62, 1--2 (2012), 361--381. Retrieved from
[6]
Sergio Cabello. 2017. Subquadratic algorithms for the diameter and the sum of pairwise distances in planar graphs. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17). 2143--2152. Retrieved from
[7]
Sergio Cabello, Erin W. Chambers, and Jeff Erickson. 2013. Multiple-source shortest paths in embedded graphs. SIAM J. Comput. 42, 4 (2013), 1542--1571. Retrieved from
[8]
Sergio Cabello and Christian Knauer. 2009. Algorithms for graphs of bounded treewidth via orthogonal range searching. Comput. Geom. 42, 9 (2009), 815--824. Retrieved from
[9]
Erin W. Chambers, Jeff Erickson, and Amir Nayyeri. 2012. Homology flows, cohomology cuts. SIAM J. Comput. 41, 6 (2012), 1605--1634. Retrieved from
[10]
Vincent Cohen-Addad, Soren Dahlgaard, and Christian Wulff-Nilsen. 2017. Fast and compact exact distance oracle for planar graphs. In Proceedings of the 58th IEEE Symposium on Foundations of Computer Science, FOCS 2017. 963--973. Retrieved from http://ieee-focs.org/FOCS-2017-Papers/3464a962.pdf.
[11]
Éric Colin de Verdière. 2010. Shortest cut graph of a surface with prescribed vertex set. In Proceedings of the 18th Annual European Symposium on Algorithms (ESA’10), Part II (Lecture Notes in Computer Science), Vol. 6347. Springer, 100--111. Retrieved from
[12]
M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. 2008. Computational Geometry: Algorithms and Applications (3rd ed.). Springer-Verlag. Retrieved from
[13]
Reinhard Diestel. 2005. Graph Theory, 3rd electronic ed. Graduate texts in mathematics, Vol. 173. Springer.
[14]
David Eppstein. 2003. Dynamic generators of topologically embedded graphs. In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms (SODA’03). 599--608. Retrieved from http://dl.acm.org/citation.cfm?id&equals;644108.644208.
[15]
J. Fakcharoenphol and S. Rao. 2006. Planar graphs, negative weight edges, shortest paths, and near linear time. J. Comput. Syst. Sci. 72, 5 (2006), 868--889. Retrieved from
[16]
Johannes Fischer and Volker Heun. 2007. A new succinct representation of RMQ-information and improvements in the enhanced suffix array. In Proceedings of the 1st International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies (ESCAPE’07) (Lecture Notes in Computer Science), Bo Chen, Mike Paterson, and Guochuan Zhang (Eds.), Vol. 4614. Springer, 459--470. Retrieved from
[17]
G. N. Frederickson. 1987. Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16 (1987), 1004--1022. Retrieved from
[18]
G. N. Frederickson. 1991. Planar graph decomposition and all pairs shortest paths. J. ACM 38, 1 (1991), 162--204. Retrieved from
[19]
Pawel Gawrychowski, Haim Kaplan, Shay Mozes, Micha Sharir, and Oren Weimann. 2018. Voronoi diagrams on planar graphs, and computing the diameter in deterministic Õ(n<sup>5/3</sup>) time. In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA’18). 515--529. Retrieved from
[20]
Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. 2018. Better tradeoffs for exact distance oracle in planar graphs. In Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms (SODA’18). 495--514. Retrieved from
[21]
Oded Goldreich and Dana Ron. 2008. Approximating average parameters of graphs. Random Struct. Algorithms 32, 4 (2008), 473--493. Retrieved from
[22]
M. T. Goodrich. 1995. Planar separators and parallel polygon triangulation. J. Comput. Syst. Sci. 51, 3 (1995), 374--389. Retrieved from
[23]
Thore Husfeldt. 2017. Computing graph distances parameterized by treewidth and diameter. In Proceedings of the 11th International Symposium on Parameterized and Exact Computation (IPEC’16) (LIPIcs), Jiong Guo and Danny Hermelin (Eds.), Vol. 63. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 16:1--16:11. Retrieved from
[24]
Piotr Indyk. 1999. Sublinear time algorithms for metric space problems. In Proceedings of the 31st ACM Symposium on Theory of Computing (STOC’99). ACM, 428--434. Retrieved from
[25]
Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. 2011. Linear-space approximate distance oracles for planar, bounded-genus and minor-free graphs. In Proceedings of the 38th International Colloquium on Automata, Languages and Programming (ICALP’11) (Lecture Notes in Computer Science), Vol. 6755. Springer, 135--146. Retrieved from
[26]
P. N. Klein. 2005. Multiple-source shortest paths in planar graphs. In Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA’05). 146--155. Retrieved from http://dl.acm.org/citation.cfm?id&equals;1070432.1070454.
[27]
Philip N. Klein, Shay Mozes, and Christian Sommer. 2013. Structured recursive separator decompositions for planar graphs in linear time. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC’13). 505--514. Retrieved from See http://arxiv.org/abs/1208.2223 for the full version.
[28]
Philip N. Klein, Shay Mozes, and Oren Weimann. 2010. Shortest paths in directed planar graphs with negative lengths: A linear-space O(nlog<sup>2</sup> n)-time algorithm. ACM Trans. Algor. 6, 2 (2010), 30:1--30:18. Retrieved from
[29]
Philip N. Klein and Sairam Subramanian. 1998. A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica 22, 3 (1998), 235--249. Retrieved from
[30]
Rolf Klein. 1989. Concrete and Abstract Voronoi Diagrams. Lecture Notes in Computer Science, Vol. 400. Springer. Retrieved from
[31]
Rolf Klein. 2014. Abstract Voronoi diagrams. In Encyclopedia of Algorithms, Ming-Yang Kao (Ed.). Springer Berlin Heidelberg, 1--5. Retrieved from
[32]
Rolf Klein, Elmar Langetepe, and Zahra Nilforoushan. 2009. Abstract Voronoi diagrams revisited. Comput. Geom. 42, 9 (2009), 885--902. Retrieved from
[33]
Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. 1993. Randomized incremental construction of abstract Voronoi diagrams. Comput. Geom. 3 (1993), 157--184. Retrieved from
[34]
R. Lipton, D. Rose, and R. Tarjan. 1979. Generalized nested dissection. SIAM J. Numer. Anal. 16, 2 (1979), 346--358. Retrieved from
[35]
Dániel Marx and Michal Pilipczuk. 2015. Optimal parameterized algorithms for planar facility location problems using Voronoi diagrams. In Proceedings of the 23rd Annual European Symposium on Algorithms (ESA’15) (Lecture Notes in Computer Science), Vol. 9294. Springer, 865--877. Retrieved from Full version available at http://arxiv.org/abs/1504.05476.
[36]
Shay Mozes, Yahav Nussbaum, and Oren Weimann. 2014. Faster shortest paths in dense distance graphs, with applications. CoRR abs/1404.0977 (2014). Retrieved from http://arxiv.org/abs/1404.0977.
[37]
Shay Mozes and Christian Sommer. 2012. Exact distance oracles for planar graphs. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 209--222. Retrieved from http://dl.acm.org/citation.cfm?id&equals;2095116.2095135.
[38]
Shay Mozes and Christian Wulff-Nilsen. 2010. Shortest paths in planar graphs with real lengths in O(n log<sup>2</sup>/log log n) time. In Proceedings of the 18th Annual European Symposium on Algorithms (ESA’10), Part II (Lecture Notes in Computer Science), Vol. 6347. Springer, 206--217. Retrieved from
[39]
Giuseppe F. Italiano Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. 2011. Improved algorithms for min cut and max flow in undirected planar graphs. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC’11). 313--322. Retrieved from
[40]
James K. Park and Cynthia A. Phillips. 1993. Finding minimum-quotient cuts in planar graphs. In Proceedings of the 25th ACM Symposium on Theory of Computing (STOC’93). 766--775. Retrieved from
[41]
Viresh Patel. 2013. Determining edge expansion and other connectivity measures of graphs of bounded genus. SIAM J. Comput. 42, 3 (2013), 1113--1131. Retrieved from
[42]
Liam Roditty and Virginia Vassilevska Williams. 2013. Fast approximation algorithms for the diameter and radius of sparse graphs. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC’13). 515--524. Retrieved from
[43]
A. Schrijver. 2003. Combinatorial Optimization—Polyhedra and Efficiency. Springer.
[44]
Jack Snoeyink. 2004. Point location. In Handbook of Discrete and Computational Geometry, 2nd ed. Jacob E. Goodman and Joseph O’Rourke (Eds.). Chapman and Hall/CRC, 767--785. Retrieved from
[45]
Roberto Tamassia and Giuseppe Liotta. 2004. Graph drawing. In Handbook of Discrete and Computational Geometry, 2nd ed. Jacob E. Goodman and Joseph O’Rourke (Eds.). Chapman and Hall/CRC, 1163--1185. Retrieved from
[46]
Mikkel Thorup. 2004. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM 51, 6 (2004), 993--1024. Retrieved from
[47]
Oren Weimann and Raphael Yuster. 2016. Approximating the diameter of planar graphs in near linear time. ACM Trans. Algor. 12, 1 (2016), 12. Retrieved from
[48]
Christian Wulff-Nilsen. 2008. Wiener Index, Diameter, and Stretch Factor of a Weighted Planar Graph in Subquadratic Time. Technical Report 08-16. Department of Computer Science, University of Copenhagen. Retrieved from http://www.diku.dk/OLD/publikationer/tekniske.rapporter/rapporter/08-16.pdf.
[49]
Christian Wulff-Nilsen. 2010. Wiener Index, Diameter, and Stretch Factor of a Weighted Planar Graph in Subquadratic Time. Retrieved from http://www.diku.dk/forskning/phd-studiet/phd/ThesisChristian.pdf.

Cited By

View all
  • (2024)Parameterized Complexity of Streaming Diameter and Connectivity ProblemsAlgorithmica10.1007/s00453-024-01246-z86:9(2885-2928)Online publication date: 1-Sep-2024
  • (2023)Almost Optimal Exact Distance Oracles for Planar GraphsJournal of the ACM10.1145/358047470:2(1-50)Online publication date: 25-Mar-2023
  • (2023)Covering Planar Metrics (and Beyond): O(1) Trees Suffice2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00139(2231-2261)Online publication date: 6-Nov-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 15, Issue 2
Special Issue on Soda'17 and Regular Papers
April 2019
407 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/3292530
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 December 2018
Accepted: 01 May 2018
Revised: 01 November 2017
Received: 01 February 2017
Published in TALG Volume 15, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Planar graph
  2. Voronoi diagram
  3. Wiener index
  4. diameter
  5. distance counting
  6. distances in graphs

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Slovenian Research Agency

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)26
  • Downloads (Last 6 weeks)3
Reflects downloads up to 15 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Parameterized Complexity of Streaming Diameter and Connectivity ProblemsAlgorithmica10.1007/s00453-024-01246-z86:9(2885-2928)Online publication date: 1-Sep-2024
  • (2023)Almost Optimal Exact Distance Oracles for Planar GraphsJournal of the ACM10.1145/358047470:2(1-50)Online publication date: 25-Mar-2023
  • (2023)Covering Planar Metrics (and Beyond): O(1) Trees Suffice2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00139(2231-2261)Online publication date: 6-Nov-2023
  • (2023)Distance problems within Helly graphs and k-Helly graphsTheoretical Computer Science10.1016/j.tcs.2023.113690946(113690)Online publication date: Feb-2023
  • (2023)Better Distance Labeling for Unweighted Planar GraphsAlgorithmica10.1007/s00453-023-01133-z85:6(1805-1823)Online publication date: 15-May-2023
  • (2023)Maximal Distortion of Geodesic Diameters in Polygonal DomainsCombinatorial Algorithms10.1007/978-3-031-34347-6_17(197-208)Online publication date: 7-Jun-2023
  • (2022)Tight dynamic problem lower bounds from generalized BMM and OMvProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520036(1515-1528)Online publication date: 9-Jun-2022
  • (2022)Computing the Inverse Geodesic Length in Planar Graphs and Graphs of Bounded TreewidthACM Transactions on Algorithms10.1145/350130318:2(1-26)Online publication date: 4-Mar-2022
  • (2022)Optimal Approximate Distance Oracle for Planar Graphs2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS52979.2021.00044(363-374)Online publication date: Feb-2022
  • (2022)Eccentricity queries and beyond using hub labelsTheoretical Computer Science10.1016/j.tcs.2022.07.017930:C(128-141)Online publication date: 21-Sep-2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media