Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3230543.3230554acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Public Access

AWStream: adaptive wide-area streaming analytics

Published: 07 August 2018 Publication History

Abstract

The emerging class of wide-area streaming analytics faces the challenge of scarce and variable WAN bandwidth. Non-adaptive applications built with TCP or UDP suffer from increased latency or degraded accuracy. State-of-the-art approaches that adapt to network changes require developer writing sub-optimal manual policies or are limited to application-specific optimizations.
We present AWStream, a stream processing system that simultaneously achieves low latency and high accuracy in the wide area, requiring minimal developer efforts. To realize this, AWStream uses three ideas: (i) it integrates application adaptation as a first-class programming abstraction in the stream processing model; (ii) with a combination of offline and online profiling, it automatically learns an accurate profile that models accuracy and bandwidth trade-off; and (iii) at runtime, it carefully adjusts the application data rate to match the available bandwidth while maximizing the achievable accuracy. We evaluate AWStream with three real-world applications: augmented reality, pedestrian detection, and monitoring log analysis. Our experiments show that AWStream achieves sub-second latency with only nominal accuracy drop (2-6%).

References

[1]
Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina, et al. 2005. The Design of the Borealis Stream Processing Engine. In CIDR, Vol. 5. Asilomar, CA, 277--289.
[2]
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX Association, GA, 265--283. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
[3]
Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. 2017. Enabling High-Quality Untethered Virtual Reality. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX Association, Boston, MA, 531--544. https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/abari
[4]
Hervé Abdi. 2007. The Kendall Rank Correlation Coefficient. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA (2007), 508--510.
[5]
Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion Stoica. 2013. BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys '13). ACM, 29--42.
[6]
Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013. MillWheel: Fault-tolerant Stream Processing at Internet Scale. Proceedings of the VLDB Endowment 6, 11 (2013), 1033--1044. https://dl.acm.org/citation.cfm?id=2536229
[7]
Sara Alspaugh, Bei Di Chen, Jessica Lin, Archana Ganapathi, Marti A Hearst, and Randy H Katz. 2014. Analyzing Log Analysis: An Empirical Study of User Log Mining. In Proceedings of the 28th USENIX Conference on Large Installation System Administration (LISA'14). USENIX Association, Berkeley, CA, USA, 53--68. http://dl.acm.org/citation.cfm?id=2717491.2717495
[8]
Amazon. 2017. Amazone EC2 Pricing. https://aws.amazon.com/ec2/pricing/. (2017). Accessed: 2017-04-12.
[9]
Ganesh Ananthanarayanan, Michael Chien-Chun Hung, Xiaoqi Ren, Ion Stoica, Adam Wierman, and Minlan Yu. 2014. GRASS: Trimming Stragglers in Approximation Analytics. In 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14). USENIX Association, Seattle, WA, 289--302. https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/ananthanarayanan
[10]
Brian Babcock and Chris Olston. 2003. Distributed Top-K Monitoring. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD'03). ACM, New York, NY, USA, 28--39.
[11]
Naveen Balani and Rajeev Hathi. 2016. Enterprise IoT: A Definitive Handbook. CreateSpace Independent Publishing Platform.
[12]
Fabrice Bellard, M Niedermayer, et al. 2012. FFmpeg. https://www.ffmpeg.org/. (2012).
[13]
Sanjit Biswas, John Bicket, Edmund Wong, Raluca Musaloiu-e, Apurv Bhartia, and Dan Aguayo. 2015. Large-scale Measurements of Wireless Network Behavior. In Proceedings of the 2015 ACM Conference on Special Interest Groupon Data Communication (SIGCOMM'15). ACM, New York, NY, USA, 153--165.
[14]
G. Bradski. 2000--2017. The OpenCV Library. Doctor Dobbs Journal (2000--2017). http://opencv.org
[15]
Matt Calder, Xun Fan, Zi Hu, Ethan Katz-Bassett, John Heidemann, and Ramesh Govindan. 2013. Mapping the Expansion of Google's Serving Infrastructure. In Proceedings of the 2013 Conference on Internet Measurement Conference (IMC'13). ACM, New York, NY, USA, 313--326.
[16]
Pei Cao and Zhe Wang. 2004. Efficient Top-K Query Calculation in Distributed Networks. In Proceedings of the twenty-third annual ACM symposium on Principles of distributed computing. ACM, 206--215.
[17]
Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single engine. Data Engineering 38, 4 (2015). https://flink.apache.org/
[18]
Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, et al. 2017. BBR: Congestion-based Congestion Control. Commun. ACM 60, 2 (2017), 58--66. http://dl.acm.org/citation.cfm?id=3042068.3009824
[19]
Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J Franklin, Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R Madden, Fred Reiss, and Mehul A Shah. 2003. Tele-graphCQ: Continuous Dataflow Processing. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD'03). ACM, New York, NY, USA, 668--668.
[20]
Brian Cho and Marcos K Aguilera. 2012. Surviving Congestion in Geo-Distributed Storage Systems. In USENIX Annual Technical Conference (USENIX ATC 12). USENIX, 439--451. https://www.usenix.org/conference/atc12/technical-sessions/presentation/cho
[21]
Cisco. 2013. The Zettabyte Era: Trends and Analysis. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html. Cisco White Paper (2013).
[22]
Benjamin Coifman, David Beymer, Philip McLauchlan, and Jitendra Malik. 1998. A Real-time Computer Vision System for Vehicle Tracking and Traffic Surveillance. Transportation Research Part C: Emerging Technologies 6, 4 (1998), 271--288.
[23]
Graham Cormode. 2011. Sketch Techniques for Massive Data. Synposes for Massive Data: Samples, Histograms, Wavelets and Sketches (2011), 1--3.
[24]
Navneet Dalal and Bill Triggs. 2005. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01 (CVPR '05). IEEE Computer Society, Washington, DC, USA, 886--893.
[25]
Martin Devera. 2001--2003. HTB Home. http://luxik.cdi.cz/~devik/qos/htb/. (2001--2003). Accessed: 2017-04-08.
[26]
Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. 2012. Pedestrian Detection: An Evaluation of the State of the Art. IEEE transactions on pattern analysis and machine intelligence 34, 4 (2012), 743--761.
[27]
Arjan Durresi and Raj Jain. 2005. RTP, RTCP, and RTSP-Internet Protocols for Real-Time Multimedia Communication. (2005).
[28]
ESnet. 2014-2017. iPerf: The TCP/UDP bandwidth measurement tool. http://software.es.net/iperf/. (2014-2017). Accessed: 2017-03-07.
[29]
Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman. 2010. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vision 88, 2 (June 2010), 303--338.
[30]
Anne Farrell and Henry Hoffmann. 2016. MEANTIME: Achieving Both Minimal Energy and Timeliness with Approximate Computing. In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX Association, Denver, CO, 421--435. https://www.usenix.org/conference/atc16/technical-sessions/presentation/farrell
[31]
Domenico Ferrari and Dinesh C Verma. 1990. A Scheme for Real-time Channel Establishment in Wide-area Networks. IEEE journal on Selected Areas in communications 8, 3 (1990), 368--379.
[32]
Minos N. Garofalakis and Phillip B. Gibbon. 2001. Approximate Query Processing: Taming the TeraBytes. In Proceedings of the 27th International Conference on Very Large Data Bases (VLDB '01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 725--. http://dl.acm.org/citation.cfm?id=645927.672356
[33]
GE. 2017. Industrial Internet Insights. https://www.ge.com/digital/industrial-internet. (2017). Accessed: 2017-09-23.
[34]
Google. 2009-2017. Nest Cam Indoor. https://www.dropcam.com. (2009-2017). Accessed: 2017-04-03.
[35]
Sarthak Grover, Mi Seon Park, Srikanth Sundaresan, Sam Burnett, Hyojoon Kim, Bharath Ravi, and Nick Feamster. 2013. Peeking Behind the NAT: An Empirical Study of Home Networks. In Proceedings of the 2013 Conference on Internet Measurement Conference (IMC'13). ACM, New York, NY, USA, 377--390.
[36]
Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online Aggregation. In Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data (SIGMOD'97). ACM, New York, NY, USA, 171--182.
[37]
Daniel Hernández-Lobato, Jose Hernandez-Lobato, Amar Shah, and Ryan Adams. 2016. Predictive Entropy Search for Multi-Objective Bayesian Optimization. In Proceedings of The 33rd International Conference on Machine Learning (Proceedings of Machine Learning Research), Maria Florina Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, New York, USA, 1492--1501. http://proceedings.mlr.press/v48/hernandez-lobatoa16.html
[38]
Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R Ganger, Phillip B Gibbons, and Onur Mutlu. 2017. Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX Association, USENIX Association. https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/hsieh
[39]
Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari. 2012. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In Proceedings of the 2012 Internet Measurement Conference (IMC '12). ACM, New York, NY, USA, 225--238.
[40]
Bert Hubert. 2002. Linux Advanced Routing & Traffic Control. http://lartc.org/. (2002). Accessed: 2017-04-06.
[41]
David Karger, Cliff Stein, and Joel Wein. 2010. Algorithms and Theory of Computation Handbook. Chapman & Hall/CRC. 20--20 pages. http://dl.acm.org/citation.cfm?id=1882723.1882743
[42]
Joel W King. 2009. Cisco IP Video Surveillance Design Guide. https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Video/IPVS/IPVS_DG/IPVS-DesignGuide.pdf. (2009).
[43]
Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Rodrigues. 2015. Pixida: optimizing data parallel jobs in wide-area data analytics. Proceedings of the VLDB Endowment 9, 2 (2015), 72--83. https://dl.acm.org/citation.cfm?id=2850582
[44]
Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler. 2012. Building Application Stack (BAS). In Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings (BuildSys '12). ACM, New York, NY, USA, 72--79.
[45]
Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD'15). ACM, New York, NY, USA, 239--250.
[46]
Frank Langfitt. 2013. In China, Beware: A Camera May Be Watching You. http://www.npr.org/2013/01/29/170469038/in-china-beware-a-camera-may-be-watching-you. (2013). Accessed: 2017-04-04.
[47]
Andrea Lattuada, Frank McSherry, and Zaheer Chothia. 2016. Faucet: a User-Level, Modular Technique for Flow Control in Dataflow Engines. In Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond. ACM, 2.
[48]
Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp: Comparing Public Cloud Providers. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement (IMC'10). ACM, New York, NY, USA, 1--14.
[49]
David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004), 91--110.
[50]
Chaochao Lu and Xiaoou Tang. 2015. Surpassing Human-level Face Verification Performance on LFW with Gaussian Face. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI'15). AAAI Press, 3811--3819. https://dl.acm.org/citation.cfm?id=2888245
[51]
Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive Video Streaming with Pensieve. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '17). ACM, New York, NY, USA, 197--210.
[52]
MG Michalos, SP Kessanidis, and SL Nalmpantis. 2012. Dynamic Adaptive Streaming over HTTP. Journal of Engineering Science and Technology Review 5, 2 (2012), 30--34.
[53]
Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad Schindler. 2016. MOT16: A Benchmark for Multi-Object Tracking. arXiv preprint arXiv:1603.00831 (2016). https://motchallenge.net/
[54]
Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan Seshan, and Hui Zhang. 2015. Practical, Real-time Centralized Control for CDN-based Live Video Delivery. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 311--324. https://dl.acm.org/citation.cfm?id=2787475
[55]
Athicha Muthitacharoen, Benjie Chen, and David Mazières. 2001. A Low-bandwidth Network File System. In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles (SOSP'01). ACM, New York, NY, USA, 174--187.
[56]
Cisco Visual Networking. 2016. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021 White Paper. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html. Cisco White Paper (2016).
[57]
Jakob Nielsen. 1994. Usability Engineering. Elsevier.
[58]
Ashkan Nikravesh, David R Choffnes, Ethan Katz-Bassett, Z Morley Mao, and Matt Welsh. 2014. Mobile Network Performance from User Devices: A Longitudinal, Multidimensional Analysis. In Proceedings of the 15th International Conference on Passive and Active Measurement - Volume 8362 (PAM 2014). Springer-Verlag New York, Inc., New York, NY, USA, 12--22.
[59]
The Division of Economic and Risk Analysis (DERA). 2003-2016. EDGAR Log File Data Set. https://www.sec.gov/data/edgar-log-file-data-set. (2003--2016). Accessed: 2017-01-25.
[60]
Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis, et al. 2011. A Large-scale Benchmark Dataset for Event Recognition in Surveillance Video. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '11). IEEE Computer Society, Washington, DC, USA, 3153--3160.
[61]
Omid Alipourfard and Hongqiang Harry Liu and Jianshu Chen and Shivaram Venkataraman and Minlan Yu and Ming Zhang. 2017. CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX Association, Boston, MA, 469--482. https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
[62]
Roger Pantos and William May. 2016. HTTP Live Streaming. (2016). https://tools.ietf.org/html/draft-pantos-http-live-streaming-19
[63]
Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman. 2015. Deep Face Recognition. In Proceedings of the British Machine Vision Conference (BMVC). BMVA Press, Article 41, 12 pages.
[64]
Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella, Paramvir Bahl, and Ion Stoica. 2015. Low Latency Geo-Distributed Data Analytics. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication (SIGCOMM'15). ACM, New York, NY, USA, 421--434.
[65]
Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J Freedman. 2014. Aggregation and Degradation in JetStream: Streaming Analytics in the Wide Area. In Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation (NSDI'14). USENIX Association, Berkeley, CA, USA, 275--288. http://dl.acm.org/citation.cfm?id=2616448.2616474
[66]
Joseph Redmon. 2013--2017. Darknet: Open Source Neural Networks in C. http://pjreddie.com/darknet/. (2013--2017).
[67]
Joseph Redmon and Ali Farhadi. 2016. YOLO9000: Better, Faster, Stronger. arXiv preprint arXiv:1612.08242 (2016). http://arxiv.org/abs/1612.08242
[68]
RezaRejaie, Mark Handley, and Deborah Estrin. 2000. Layered Quality Adaptation for Internet Video Streaming. IEEE Journal on Selected Areas in Communications 18, 12 (2000), 2530--2543.
[69]
Iain E. Richardson. 2010. The H.264 Advanced Video Compression Standard (2nd ed.). Wiley Publishing.
[70]
C. J. Van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-Heinemann, Newton, MA, USA.
[71]
Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman. 2008. LabelMe: a Database and Web-based Tool for Image Annotation. Int. J. Comput. Vision 77, 1-3 (May 2008), 157--173.
[72]
Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011. EnerJ: Approximate Data Types for Safe and General Low-power Computation. In ACM SIGPLAN Notices, Vol. 46. ACM, 164--174.
[73]
Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. 2009. The Case for VM-based Cloudlets in Mobile Computing. IEEE Pervasive Computing 8, 4 (Oct. 2009), 14--23.
[74]
H Schulzrinne, S Casner, R Frederick, and V Jaconson. 2006. RTP: A Transport Protocol for Real-Time. (2006).
[75]
H Schulzrinne, A Rao, and R Lanphier. 1998. RTSP: Real time streaming protocol. IETFRFC2326, april (1998).
[76]
Scott Shenker. 1995. Fundamental Design Issues for the Future Internet. IEEE Journal on selected areas in communications 13, 7 (1995), 1176--1188.
[77]
Scott Shenker, R Braden, and D Clark. 1994. Integrated services in the Internet architecture: an overview. IETF Request for Comments (RFC) 1633 (1994).
[78]
Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. In Advances in neural information processing systems. 2951--2959.
[79]
Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming over the Internet. IEEE MultiMedia 18, 4 (Oct. 2011), 62--67.
[80]
Benjamin Solnik, Daniel Golovin, Greg Kochanski, John Elliot Karro, Subhodeep Moitra, and D Sculley. 2017. Bayesian Optimization for a Better Dessert. (2017). https://research.google.com/pubs/archive/46507.pdf
[81]
Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao Liu, and Bruno Sinopoli. 2016. CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven Throughput Prediction. In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM, ACM, 272--285.
[82]
Srikanth Sundaresan, Sam Burnett, Nick Feamster, and Walter De Donato. 2014. BISmark: A Testbed for Deploying Measurements and Applications in Broadband Access Networks. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference (USENIXATC'14). USENIX Association, Berkeley, CA, USA, 383394. http://dl.acm.org/citation.cfm?id=2643634.2643673
[83]
GStreamer Team. 2001--2017. GStreamer: Open Source Multimedia Framework. (2001--2017). https://gstreamer.freedesktop.org/
[84]
TeleGeography. 2016. Global Internet Geography. https://www.telegeography.com/research-services/global-internet-geography/. (2016). Accessed: 2017-04-10.
[85]
James Temperton. 2015. One nation under CCTV: the future of automated surveillance. http://www.wired.co.uk/article/one-nation-under-cctv. (2015). Accessed: 2017-01-27.
[86]
Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data. ACM, 147--156. https://dl.acm.org/citation.cfm?id=2595641
[87]
Bobby Vandalore, Wu-chi Feng, Raj Jain, and Sonia Fahmy. 2001. A Survey of Application Layer Techniques for Adaptive Streaming of Multimedia. Real-Time Imaging 7, 3 (2001), 221--235.
[88]
Paul Viola and Michael Jones. 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1. I-511--I-518 vol.1.
[89]
Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016. Clarinet: WAN-Aware Optimization for Analytics Queries. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). USENIX Association, GA, 435--450. https://www.usenix.org/conference/osdi16/technical-sessions/presentation/viswanathan
[90]
Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Konstantinos Karanasos, Jitendra Padhye, and George Varghese. 2015. WANalytics: Geo-Distributed Analytics for a Data Intensive World. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (SIGMOD'15). ACM, New York, NY, USA, 1087--1092.
[91]
Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Jitu Padhye, and George Varghese. 2015. Global Analytics in the Face of Bandwidth and Regulatory Constraints. In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15). 323--336. https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/vulimiri
[92]
Gregory K Wallace. 1991. The JPEG Still Picture Compression Standard. Commun. ACM 34, 4 (April 1991), 30--44.
[93]
Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y Zhao. 2016. Anatomy of a Personalized Livestreaming System. In Proceedings of the 2016 ACM on Internet Measurement Conference. ACM, 485--498.
[94]
Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication (SIGCOMM'15). ACM, New York, NY, USA, 325--338.
[95]
Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant Streaming Computation at Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP'13). ACM, New York, NY, USA, 423--438.
[96]
Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale with Approximation and Delay-Tolerance. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17). USENIX Association, Boston, MA, 377--392. https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/zhang
[97]
Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle Jamieson, and Suman Banerjee. 2015. The Design and Implementation of a Wireless Video Surveillance System. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. ACM, 426--438. https://dl.acm.org/citation.cfm?id=2790123
[98]
Xuan Kelvin Zou, Jeffrey Erman, Vijay Gopalakrishnan, Emir Halepovic, Rittwik Jana, Xin Jin, Jennifer Rexford, and Rakesh K. Sinha. 2015. Can Accurate Predictions Improve Video Streaming in Cellular Networks?. In Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications (HotMobile '15). ACM, New York, NY, USA, 57--62.

Cited By

View all
  • (2025)Joint Encoding and Enhancement for Low-Light Video Analytics in Mobile Edge NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2024.351421424:4(3330-3345)Online publication date: Apr-2025
  • (2025)CL-Shield: A Continuous Learning System for Protecting User PrivacyIEEE Transactions on Mobile Computing10.1109/TMC.2024.350472124:4(3148-3162)Online publication date: Apr-2025
  • (2025)Joint Configuration Optimization and GPU Allocation for Multi-Tenant Real-Time Video Analytics on Resource-Constrained EdgeIEEE Transactions on Mobile Computing10.1109/TMC.2024.346543424:2(794-811)Online publication date: Feb-2025
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGCOMM '18: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication
August 2018
604 pages
ISBN:9781450355674
DOI:10.1145/3230543
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 August 2018

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. adaptation
  2. learning
  3. profiling
  4. wide area network

Qualifiers

  • Research-article

Funding Sources

Conference

SIGCOMM '18
Sponsor:
SIGCOMM '18: ACM SIGCOMM 2018 Conference
August 20 - 25, 2018
Budapest, Hungary

Acceptance Rates

Overall Acceptance Rate 462 of 3,389 submissions, 14%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)428
  • Downloads (Last 6 weeks)64
Reflects downloads up to 07 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Joint Encoding and Enhancement for Low-Light Video Analytics in Mobile Edge NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2024.351421424:4(3330-3345)Online publication date: Apr-2025
  • (2025)CL-Shield: A Continuous Learning System for Protecting User PrivacyIEEE Transactions on Mobile Computing10.1109/TMC.2024.350472124:4(3148-3162)Online publication date: Apr-2025
  • (2025)Joint Configuration Optimization and GPU Allocation for Multi-Tenant Real-Time Video Analytics on Resource-Constrained EdgeIEEE Transactions on Mobile Computing10.1109/TMC.2024.346543424:2(794-811)Online publication date: Feb-2025
  • (2025)Argus: Enabling Cross-Camera Collaboration for Video Analytics on Distributed Smart CamerasIEEE Transactions on Mobile Computing10.1109/TMC.2024.345940924:1(117-134)Online publication date: Jan-2025
  • (2024)Artificial Intelligence of Things: A SurveyACM Transactions on Sensor Networks10.1145/369063921:1(1-75)Online publication date: 30-Aug-2024
  • (2024)The Blind and the Elephant: A Preference-aware Edge Video Analytics Scheduler for Maximizing System BenefitProceedings of the 53rd International Conference on Parallel Processing10.1145/3673038.3673081(317-326)Online publication date: 12-Aug-2024
  • (2024)SALINA: Towards Sustainable Live Sonar Analytics in Wild EcosystemsProceedings of the 22nd ACM Conference on Embedded Networked Sensor Systems10.1145/3666025.3699323(68-81)Online publication date: 4-Nov-2024
  • (2024)StarStream: Live Video Analytics over Space NetworkingProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680785(7909-7917)Online publication date: 28-Oct-2024
  • (2024)NeRFHub: A Context-Aware NeRF Serving Framework for Mobile Immersive ApplicationsProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661879(85-98)Online publication date: 3-Jun-2024
  • (2024)Logan: Loss-tolerant Live Video Analytics SystemProceedings of the 30th Annual International Conference on Mobile Computing and Networking10.1145/3636534.3690695(1314-1329)Online publication date: 4-Dec-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media