Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3307339.3342132acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Human Protein Complex Signatures for Drug Repositioning

Published: 04 September 2019 Publication History

Abstract

Drug repositioning approaches are attracting more and more attentions in drug discovery field. Benefiting from the high-throughput gene expression data, many computational drug repositioning approaches use gene signatures to represent diseases and drugs, to identify potential drugs for diseases. Then the gene signature is used to identify potential drugs for a disease. However, the gene signatures do not take the dependencies between genes into account in the development of diseases. In this paper, we proposed human protein complex (HPC) signatures to identify potential drugs for diseases. The human protein complex (HPC) features are identified from the comprehensive resource of mammalian protein complexes (CORUM) database Based on the gene expression values, the HPC expression values are calculated. All the gene expression profiles of diseases and drug perturbations are converted to the profiles of HPCs. The HPC signatures are identified from the profiles and a list of drug candidates is generated. The results of 5 cancers indicate that the proposed method identifies more known drugs, compared with gene signature methods.

References

[1]
J. J. Arcaroli, B. M. Touban, A. C. Tan, M. Varella-Garcia, R. W. Powell, S. G. Eckhardt, P. Elvin, D. Gao, and W. A. Messersmith. 2010. Gene array and fluorescence in situ hybridization biomarkers of activity of saracatinib (AZD0530), a Src inhibitor, in a preclinical model of colorectal cancer. Clinical Cancer Research 16, 16 (2010), 4165--4177.
[2]
J. K. Aronson. 2007. Old drugs--new uses. British journal of clinical pharmacology 64, 5 (2007), 563--565.
[3]
T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F. Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy, P. M. Sherman, M. Holko, et al. 2012. NCBI GEO: archive for functional genomics data sets-update. Nucleic acids research 41, D1 (2012), D991--D995.
[4]
Y. Benjamini and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological) 57, 1 (1995), 289--300.
[5]
M. Boolell, M. J. Allen, S. A. Ballard, S. Gepi-Attee, G. J. Muirhead, A. M. Naylor, I. H. Osterloh, and C. Gingell. 1996. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. International journal of impotence research 8, 2 (1996), 47--52.
[6]
K. Chandran, S. Goswami, and N. Sharma-Walia. 2016. Implications of a peroxisome proliferator-activated receptor alpha (PPARα) ligand clofibrate in breast cancer. Oncotarget 7, 13 (2016), 15577.
[7]
B. Chen, J. Shi, S. Zhang, and F. X. Wu. 2013. Identifying protein complexes in protein--protein interaction networks by using clique seeds and graph entropy. Proteomics 13, 2 (2013), 269--277.
[8]
D. Chen, Q. C. Cui, H. Yang, and Q. P. Dou. 2006. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer research 66, 21 (2006), 10425--10433.
[9]
G. Chen, B. Zhang, H. Xu, Y. Sun, Y. Shi, Y. Luo, H. Jia, and F. Wang. 2017. Suppression of Sirt1 sensitizes lung cancer cells to WEE1 inhibitor MK-1775- induced DNA damage and apoptosis. Oncogene 36, 50 (2017), 6863.
[10]
L. Chen, L.Wang, H. Shen, H. Lin, andD. Li. 2017. Anthelminthic drug niclosamide sensitizes the responsiveness of cervical cancer cells to paclitaxel via oxidative stress-mediated mTOR inhibition. Biochemical and biophysical research communications 484, 2 (2017), 416--421.
[11]
Chlorambucil 2019. Chlorambucil. https://www.drugbank.ca/drugs/DB00291.
[12]
G. Cornelia, R. Casaretti, P. Cornelia, A. Daponte, A. Parziale, V. Iervolino, G. Santillo, and D. Zarrilli. 1991. Treatment of advanced colorectal cancer with mitoxantrone, high dose folinic acid and fluorouracil. Tumori Journal 77, 5 (1991), 445--446.
[13]
F. Emmert-Streib, S. Tripathi, R. M. Simoes, A. F. Hawwa, and M. Dehmer. 2013. The human disease network: Opportunities for classification, diagnosis, and prediction of disorders and disease genes. Systems Biomedicine 1, 1 (2013), 20--28.
[14]
H. Endo, M. Yano, Y. Okumura, and H. Kido. 2014. Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70. Cell death & disease 5, 1 (2014), e1027.
[15]
B. Escudier, C. Porta, T. Eisen, J. Belsey, D. Gibson, J. Morgan, and R. Motzer. 2018. The role of tivozanib in advanced renal cell carcinoma therapy. Expert review of anticancer therapy 18, 11 (2018), 1113--1124.
[16]
N. Faham and A. L. Welm. 2016. RON signaling is a key mediator of tumor progression in many human cancers. In Cold Spring Harbor symposia on quantitative biology, Vol. 81. Cold Spring Harbor Laboratory Press, 177--188.
[17]
H. Fan-Minogue, S. Bodapati, D. Solow-Cordero, A. Fan, R. Paulmurugan, T. F. Massoud, D.W. Felsher, and S. S. Gambhir. 2013. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Molecular cancer therapeutics 12, 9 (2013), 1896--1905.
[18]
L. S. Faried, A. Faried, T. Kanuma, T. Nakazato, T. Tamura, H. Kuwano, and T. Minegishi. 2006. Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin increases chemosensitivity of CaSki cells to paclitaxel. European journal of cancer 42, 7 (2006), 934--947.
[19]
J. Fu, L. Qin, T. He, J. Qin, J. Hong, J. Wong, L. Liao, and J. Xu. 2011. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell research 21, 2 (2011), 275.
[20]
S. Garvin, K. Öllinger, and C. Dabrosin. 2006. Resveratrol induces apoptosis and inhibits angiogenesis in human breast cancer xenografts in vivo. Cancer letters 231, 1 (2006), 113--122.
[21]
P. E. Goss, J. N. Ingle, J. E. Alés-Martínez, A. M. Cheung, R. T. Chlebowski, J. Wactawski-Wende, A. McTiernan, J. Robbins, K. C. Johnson, L. W. Martin, et al. 2011. Exemestane for breast-cancer prevention in postmenopausal women. New England Journal of Medicine 364, 25 (2011), 2381--2391.
[22]
H.Haeberle, J. T. Dudley, J. T. Liu, A. J. Butte, and C. H. Contag. 2012. Identification of cell surface targets through meta-analysis of microarray data. Neoplasia 14, 7 (2012), 666--669.
[23]
H. J. Hammers, H. Verheul, B. Wilky, B. Salumbides, J. Holleran, M. J. Egorin, M. Lodge, R. L. Wahl, J. A. Zwiebel, M. A. Carducci, et al. 2008. Phase I safety and pharmacokinetic/pharmacodynamic results of the histone deacetylase inhibitor vorinostat in combination with bevacizumab in patients with kidney cancer. Journal of Clinical Oncology 26, 15_suppl (2008), 16094--16094.
[24]
M. Hollander and D. A. Wolfe. 1999. Nonparametric statistical methods/by Myles Hollander, Douglas A. Wolfe. Technical Report.
[25]
M. Honorat, A. Mesnier, A. Di Pietro, V. Lin, P. Cohen, C. Dumontet, and L. Payen. 2008. Dexamethasone down-regulates ABCG2 expression levels in breast cancer cells. Biochemical and biophysical research communications 375, 3 (2008), 308--314.
[26]
M. R. Hurle, L. Yang, Q. Xie, D. K. Rajpal, P. Sanseau, and P. Agarwal. 2013. Computational drug repositioning: from data to therapeutics. Clinical Pharmacology & Therapeutics 93, 4 (2013), 335--341.
[27]
F. Iorio, J. Saez-Rodriguez, and D. Di Bernardo. 2013. Network based elucidation of drug response: from modulators to targets. BMC systems biology 7, 1 (2013), 139.
[28]
A. A. Ivanov, F. R. Khuri, and H. Fu. 2013. Targeting protein--protein interactions as an anticancer strategy. Trends in pharmacological sciences 34, 7 (2013), 393--400.
[29]
G. Jin and S. T. Wong. 2014. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines. Drug discovery today 19, 5 (2014), 637--644.
[30]
S. H. Jones. 1957. Nitrogen mustard with corticosteroid and chlortetracycline for far-advanced metastatic cancer. Postgraduate medicine 21, 5 (1957), 520--525.
[31]
S. Kang, S. M. Dong, B. R. Kim, M. S. Park, B. Trink, H. J. Byun, and S. B. Rho. 2012. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 17, 9 (2012), 989--997.
[32]
S. H. Kim, S. H. Kim, Y. B. Kim, Y. T. Jeon, S. C. Lee, and Y. S. Song. 2009. Genistein inhibits cell growth by modulating various mitogen-activated protein kinases and AKT in cervical cancer cells. Annals of the New York Academy of Sciences 1171, 1 (2009), 495--500.
[33]
J. Lamb. 2007. The Connectivity Map: a new tool for biomedical research. Nature reviews cancer 7, 1 (2007), 54.
[34]
J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, J. Lerner, J. P. Brunet, A. Subramanian, K. N. Ross, et al. 2006. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. science 313, 5795 (2006), 1929--1935.
[35]
C. M. Lee, C. B. Fuhrman, V. Planelles, M. R. Peltier, D. K. Gaffney, A. P. Soisson, M. K. Dodson, H. D. Tolley, C. L. Green, and K. A. Zempolich. 2006. Phosphatidylinositol 3-kinase inhibition by LY294002 radiosensitizes human cervical cancer cell lines. Clinical cancer research 12, 1 (2006), 250--256.
[36]
X. Lei, F. Wang, F. X. Wu, A. Zhang, and W. Pedrycz. 2016. Protein complex identification through Markov clustering with firefly algorithm on dynamic protein--protein interaction networks. Information Sciences 329 (2016), 303--316.
[37]
N. B. Leighl, M. S. Tsao, G. Liu, D. Tu, C. Ho, F. A. Shepherd, N. Murray, J. R. Goffin, G. Nicholas, S. Sakashita, et al. 2017. A phase I study of foretinib plus erlotinib in patients with previously treated advanced non-small cell lung cancer: Canadian cancer trials group IND. 196. Oncotarget 8, 41 (2017), 69651.
[38]
M. D. Leiserson, F. Vandin, H. T. Wu, J. R. Dobson, J. V. Eldridge, J. L. Thomas, A. Papoutsaki, Y. Kim, B. Niu, M. McLellan, et al. 2015. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nature genetics 47, 2 (2015), 106.
[39]
M. Li, T. W. Lee, A. P. Yim, T. S. Mok, and G. G. Chen. 2006. Apoptosis induced by troglitazone is both peroxisome proliferator-activated receptor-γ -and ERKdependent in human non-small lung cancer cells. Journal of cellular physiology 209, 2 (2006), 428--438.
[40]
X. Li, T. Colvin, J. N. Rauch, D. Acosta-Alvear, M. Kampmann, B. Dunyak, B. Hann, B. T. Aftab, M. Murnane, M. Cho, et al. 2015. Validation of the Hsp70--Bag3 protein--protein interaction as a potential therapeutic target in cancer. Molecular cancer therapeutics 14, 3 (2015), 642--648.
[41]
H. Liang and A. R. Tan. 2010. Iniparib, a PARP1 inhibitor for the potential treatment of cancer, including triple-negative breast cancer. IDrugs: the investigational drugs journal 13, 9 (2010), 646--656.
[42]
H. Lin, J. L. Juang, and P. S. Wang. 2004. Involvement of Cdk5/p25 in digoxintriggered prostate cancer cell apoptosis. Journal of Biological Chemistry 279, 28 (2004), 29302--29307.
[43]
X. Liu, X. Chang, R. Liu, X. Yu, L. Chen, and K. Aihara. 2017. Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLoS computational biology 13, 7 (2017), e1005633.
[44]
B. L. Lokeshwar, M. G. Selzer, B. Q. Zhu, N. L. Block, and L. M. Golub. 2002. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. International journal of cancer 98, 2 (2002), 297--309.
[45]
P. E. Lønning and S. Kvinnsland. 1988. Mechanisms of action of aminoglutethimide as endocrine therapy of breast cancer. Drugs 35, 6 (1988), 685--710.
[46]
D. Minami, N. Takigawa, H. Takeda, M. Takata, N. Ochi, E. Ichihara, A. Hisamoto, K. Hotta, M. Tanimoto, and K. Kiura. 2013. Synergistic effect of olaparib with combination of cisplatin on PTEN-deficient lung cancer cells. Molecular Cancer Research 11, 2 (2013), 140--148.
[47]
Mitoxantrone 2017. Commonly used drugs in treatment of prostate cancer. https://www.prostate.org.au/awareness/furtherdetailed- information/commonly-used-drugs-in-treatment-of-prostatecancer/ mitoxantrone/.
[48]
P. N. Munster, K. T. Thurn, S. Thomas, P. Raha, M. Lacevic, A. Miller, M. Melisko, R. Ismail-Khan, H. Rugo, M. Moasser, et al. 2011. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. British journal of cancer 104, 12 (2011), 1828.
[49]
K. Okubo, M. Isono, T. Asano, and A. Sato. 2018. Panobinostat and Nelfinavir Inhibit Renal Cancer Growth by Inducing Endoplasmic Reticulum Stress. Anticancer research 38, 10 (2018), 5615--5626.
[50]
T. Onoda, T. Ono, D. K. Dhar, A. Yamanoi, and N. Nagasue. 2006. Tetracycline analogues (doxycycline and COL-3) induce caspase-dependent and-independent apoptosis in human colon cancer cells. International journal of cancer 118, 5 (2006), 1309--1315.
[51]
P. G. O'Reilly, Q. Wen, P. Bankhead, P. D. Dunne, D. G. McArt, S. McPherson, P. W. Hamilton, K. I. Mills, and S. D. Zhang. 2016. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics. BMC bioinformatics 17, 1 (2016), 198.
[52]
T. M. Pitts, M. Morrow, S. A. Kaufman, J. J. Tentler, and S. G. Eckhardt. 2009. Vorinostat and bortezomib exert synergistic antiproliferative and proapoptotic effects in colon cancer cell models. Molecular cancer therapeutics 8, 2 (2009), 342--349.
[53]
N. Ramnath, S. Daignault-Newton, G. K. Dy, J. Muindi, A. Adjei, G. P. Kalemkerian, K. B. Cease, P. J. Stella, D. E. Brenner, C. S. Johnson, et al. 2012. A Phase I/II Clinical Trial of intravenous (IV) Calcitriol with fixed dose of Cisplatin and Docetaxel in Advanced Non-Small Cell Lung Cancer. Ann Arbor 1001 (2012), 48109--5848.
[54]
B. S. Reddy, C. X. Wang, A. N. Kong, T. O. Khor, X. Zheng, V. E. Steele, L. Kopelovich, and C. V. Rao. 2006. Prevention of azoxymethane-induced colon cancer by combination of low doses of atorvastatin, aspirin, and celecoxib in F 344 rats. Cancer research 66, 8 (2006), 4542--4546.
[55]
D. M. Sabatini. 2006. mTOR and cancer: insights into a complex relationship. Nature Reviews Cancer 6, 9 (2006), 729.
[56]
P. Sanseau, P. Agarwal, M. R. Barnes, T. Pastinen, J. B. Richards, L. R. Cardon, and V. Mooser. 2012. Use of genome-wide association studies for drug repositioning. Nature biotechnology 30, 4 (2012), 317.
[57]
I. Scheers, J. J. Palermo, S. Freedman, M. Wilschanski, U. Shah, M. Abu-El-Hajia, B. Barth, D. S. Fishman, C. Gariepy, M. J. Giefer, et al. 2018. NCBINCBI Logo Skip to main content Skip to navigation Resources How To About NCBI Accesskeys Sign in to NCBI US National Library of Medicine National Institutes of Health Search database Search term Clear input Advanced Help Result Filters Format: Abstract Send to J Pediatr Gastroenterol Nutr. 2018 May 9. Journal of Pediatric Gastroenterology and Nutrition (2018).
[58]
E. Schultze, A. Ourique, V. C. Yurgel, K. R. Begnini, H. Thurow, P. M. M. de Leon, V. F. Campos, O. A. Dellagostin, S. R. Guterres, A. R. Pohlmann, et al. 2014. Encapsulation in lipid-core nanocapsules overcomes lung cancer cell resistance to tretinoin. European Journal of Pharmaceutics and Biopharmaceutics 87, 1 (2014), 55--63.
[59]
S. Sharma, H. P. Yao, Y. Q. Zhou, J. Zhou, R. Zhang, and M. H. Wang. 2014. Prevention of BMS-777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics. Molecular oncology 8, 3 (2014), 469--482.
[60]
C. Y. Shiang, Y. Qi, B.Wang, V. Lazar, J.Wang,W. F. Symmans, G. N. Hortobagyi, F. Andre, and L. Pusztai. 2010. Amplification of fibroblast growth factor receptor-1 in breast cancer and the effects of brivanib alaninate. Breast cancer research and treatment 123, 3 (2010), 747--755.
[61]
P. Singh and A. Bhardwaj. 2008. Mechanism of action of key enzymes associated with cancer propagation and their inhibition by various chemotherapeutic agents. Mini reviews in medicinal chemistry 8, 4 (2008), 388--398.
[62]
S. S. Sridhar, M. J. Mackenzie, S. J. Hotte, S. D. Mukherjee, I. F. Tannock, N. Murray, C. Kollmannsberger, M. A. Haider, E. X. Chen, R. Halford, et al. 2013. A phase II study of cediranib (AZD 2171) in treatment naive patients with progressive unresectable recurrent or metastatic renal cell carcinoma. A trial of the PMH phase 2 consortium. Investigational new drugs 31, 4 (2013), 1008--1015.
[63]
A. Subramanian, R. Narayan, S. M. Corsello, D. D. Peck, T. E. Natoli, X. Lu, J. Gould, J. F. Davis, A. A. Tubelli, J. K. Asiedu, et al. 2017. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171, 6 (2017), 1437--1452.
[64]
D. C. Swinney and J. Anthony. 2011. How were new medicines discovered? Nature reviews Drug discovery 10, 7 (2011), 507.
[65]
Tacedinaline 2019. Tacedinaline. https://www.drugbank.ca/drugs/DB12291.
[66]
S. K. Tan, A. Jermakowicz, A. K. Mookhtiar, C. B. Nemeroff, S. C. Schürer, and N. G. Ayad. 2018. Drug repositioning in glioblastoma: A pathway perspective. Frontiers in pharmacology 9 (2018), 218.
[67]
D. Taras, J. F. Blanc, A. Rullier, N. Dugot-Senant, I. Laurendeau, M. Vidaud, and J. Rosenbaum. 2007. Pravastatin reduces lung metastasis of rat hepatocellular carcinoma via a coordinated decrease of MMP expression and activity. Journal of hepatology 46, 1 (2007), 69--76.
[68]
C. S. Tellez, M. J. Grimes, M. A. Picchi, Y. Liu, T. H. March, M. D. Reed, A. Oganesian, P. Taverna, and S. A. Belinsky. 2014. SGI-110 and entinostat therapy reduces lung tumor burden and reprograms the epigenome. International journal of cancer 135, 9 (2014), 2223--2231.
[69]
M. A. Tennis, M. Van Scoyk, L. E. Heasley, K. Vandervest, M. Weiser-Evans, S. Freeman, R. L. Keith, P. Simpson, R. A. Nemenoff, and R. A. Winn. 2010. Prostacyclin inhibits non-small cell lung cancer growth by a frizzled 9-dependent pathway that is blocked by secreted frizzled-related protein 1. Neoplasia 12, 3 (2010), 244--IN6.
[70]
S. Van Schaeybroeck, A. Karaiskou-McCaul, D. Kelly, D. Longley, L. Galligan, E. Van Cutsem, and P. Johnston. 2005. Epidermal growth factor receptor activity determines response of colorectal cancer cells to gefitinib alone and in combination with chemotherapy. Clinical Cancer Research 11, 20 (2005), 7480--7489.
[71]
R. D. Van Wyhe, O. M. Rahal, and W. A. Woodward. 2017. Effect of statins on breast cancer recurrence and mortality: a review. Breast Cancer: Targets and Therapy 9 (2017), 559.
[72]
C. Wang, N. Jette, D. Moussienko, D. G. Bebb, and S. P. Lees-Miller. 2017. ATMdeficient colorectal cancer cells are sensitive to the PARP inhibitor olaparib. Translational oncology 10, 2 (2017), 190--196.
[73]
F. Wang, X. Lei, and F. X. Wu. 2019. A Review of Drug Repositioning Based Chemical-induced Cell Line Expression Data. Current medicinal chemistry (2019).
[74]
H. Wang, Y. Wang, E. R. Rayburn, D. L. Hill, J. J. Rinehart, and R. Zhang. 2007. Dexamethasone as a chemosensitizer for breast cancer chemotherapy: potentiation of the antitumor activity of adriamycin, modulation of cytokine expression, and pharmacokinetics. International journal of oncology 30, 4 (2007), 947--953.
[75]
X.Wang, S.Wei, Y. Zhao, C. Shi, P. Liu, C. Zhang, Y. Lei, B. Zhang, B. Bai, Y. Huang, et al. 2017. Anti-proliferation of breast cancer cells with itraconazole: Hedgehog pathway inhibition induces apoptosis and autophagic cell death. Cancer letters 385 (2017), 128--136.
[76]
Y. Watanabe, H. Hoshiai, T. Nakanishi, N. Kawamura, N. Tanaka, K. Isaka, S. Kamiura, M. Ohmichi, M. Hatae, and K. Ochiai. 2011. Evaluation of oral etoposide in combination with cisplatin for patients with recurrent cervical cancer: longterm follow-up results of a Japanese multicenter study. Anticancer research 31, 9 (2011), 3063--3067.
[77]
Q.Wen, P. O'Reilly, P. D. Dunne, M. Lawler, S. Van Schaeybroeck, M. Salto-Tellez, P. Hamilton, and S. D. Zhang. 2015. Connectivity mapping using a combined gene signature from multiple colorectal cancer datasets identified candidate drugs including existing chemotherapies. BMC systems biology 9, 5 (2015), S4.
[78]
K. Winnicka, K. Bielawski, A. Bielawska, and W. Miltyk. 2007. Apoptosismediated cytotoxicity of ouabain, digoxin and proscillaridin A in the estrogen independent MDA-MB-231 breast cancer cells. Archives of pharmacal research 30, 10 (2007), 1216--1224.
[79]
D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, et al. 2017. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research 46, D1 (2017), D1074--D1082.
[80]
C. Wu, J. Zhu, and X. Zhang. 2012. Integrating gene expression and proteinprotein interaction network to prioritize cancer-associated genes. BMC bioinformatics 13, 1 (2012), 182.
[81]
Y. L. Wu, C. Zhou, C. P. Hu, J. Feng, S. Lu, Y. Huang, W. Li, M. Hou, J. H. Shi, K. Y. Lee, et al. 2014. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. The lancet oncology 15, 2 (2014), 213--222.
[82]
P. Xuan, Y. Cao, T. Zhang, X.Wang, S. Pan, and T. Shen. 2019. Drug repositioning through integration of prior knowledge and projections of drugs and diseases. Bioinformatics (2019).
[83]
C. K. Yan, W. X. Wang, G. Zhang, J. L. Wang, and A. Patel. 2019. BiRWDDA: A Novel Drug Repositioning Method Based on Multisimilarity Fusion. Journal of Computational Biology (2019).
[84]
C. C. Yang and M. Zhao. 2019. Mining Heterogeneous Network for Drug Repositioning using Phenotypic Information Extracted from Social Media and Pharmaceutical Databases. Artificial Intelligence in Medicine (2019).
[85]
P. M. Yang, Y. T. Lin, C. T. Shun, S. H. Lin, T. T. Wei, S. H. Chuang, M. S. Wu, and C. C. Chen. 2013. Zebularine inhibits tumorigenesis and stemness of colorectal cancer via p53-dependent endoplasmic reticulum stress. Scientific reports 3 (2013), 3219.
[86]
L. R. Zacharski, P. Prandoni, and M. Monreal. 2005. Warfarin versus lowmolecular- weight heparin therapy in cancer patients. The oncologist 10, 1 (2005), 72--79.
[87]
S. D. Zhang and T. W. Gant. 2008. A simple and robust method for connecting small-molecule drugs using gene-expression signatures. BMC bioinformatics 9, 1 (2008), 258.
[88]
S. D. Zhang and T. W. Gant. 2009. sscMap: an extensible Java application for connecting small-molecule drugs using gene-expression signatures. BMC bioinformatics 10, 1 (2009), 236.
[89]
H. Zhao, G. Jin, K. Cui, D. Ren, T. Liu, P. Chen, S.Wong, F. Li, Y. Fan, A. Rodriguez, et al. 2013. Novel modeling of cancer cell signaling pathways enables systematic drug repositioning for distinct breast cancer metastases. Cancer research 73, 20 (2013), 6149--6163.
[90]
X. Zhou, E. Dai, Q. Song, X. Ma, Q. Meng, Y. Jiang, and W. Jiang. 2019. In silico drug repositioning based on drug-miRNA associations. Briefings in bioinformatics (2019).

Cited By

View all
  • (2023)Network neighborhood operates as a drug repositioning method for cancer treatmentPeerJ10.7717/peerj.1562411(e15624)Online publication date: 10-Jul-2023
  • (2021)Human Protein Complex-Based Drug Signatures for Personalized Cancer MedicineIEEE Journal of Biomedical and Health Informatics10.1109/JBHI.2021.312093325:11(4079-4088)Online publication date: Nov-2021
  • (2020)Identifying gene signatures for cancer drug repositioning based on sample clusteringIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2020.3019781(1-1)Online publication date: 2020

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
BCB '19: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
September 2019
716 pages
ISBN:9781450366663
DOI:10.1145/3307339
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 September 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. cmap
  2. drug repositioning
  3. gene signature
  4. human protein complex
  5. lincs

Qualifiers

  • Research-article

Funding Sources

  • Natural Sciences and Engineering Research Council of Canada
  • the National Natural Science Foundation of China under Grant
  • China Scholarship Council

Conference

BCB '19
Sponsor:

Acceptance Rates

BCB '19 Paper Acceptance Rate 42 of 157 submissions, 27%;
Overall Acceptance Rate 254 of 885 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Network neighborhood operates as a drug repositioning method for cancer treatmentPeerJ10.7717/peerj.1562411(e15624)Online publication date: 10-Jul-2023
  • (2021)Human Protein Complex-Based Drug Signatures for Personalized Cancer MedicineIEEE Journal of Biomedical and Health Informatics10.1109/JBHI.2021.312093325:11(4079-4088)Online publication date: Nov-2021
  • (2020)Identifying gene signatures for cancer drug repositioning based on sample clusteringIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2020.3019781(1-1)Online publication date: 2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media