Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3347146.3359361acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Efficient Calculation of Microscopic Travel Demand Data with Low Calibration Effort

Published: 05 November 2019 Publication History

Abstract

Determining travel demand within a region of interest takes a considerable calibration effort, requiring transportation surveys, traffic counts, and empirical trip volumes. However, there is a need for demand calculation without substantial calibration, for example to generate large-scale benchmark data for evaluating transportation algorithms. In this work, we present several approaches for demand calculation that take as input only publicly available data, such as population and POI densities. Our algorithms build upon the recently proposed radiation model, which is inspired by job search models in economics. We show that a straightforward implementation of the radiation model does not scale to continental road networks, taking months even on a modern 16-core server. Therefore, we introduce more scalable implementations, substantially decreasing the running time by five orders of magnitude from months to seconds. An extensive experimental evaluation shows that the output of our algorithms is in accordance with demand data used in production systems. Compared to simple approaches previously used in algorithmic publications to generate benchmark data, our algorithms output demand data of better quality, take less time, and have similar implementation complexity.

References

[1]
I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. 2011. A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In SEA 2011 (LNCS), Vol. 6630. Springer, 230--241. https://doi.org/10.1007/978-3-642-20662-7_20
[2]
J. Arz, D. Luxen, and P. Sanders. 2013. Transit Node Routing Reconsidered. In SEA 2013 (LNCS), Vol. 7933. Springer, 55--66. https://doi.org/10.1007/978-3-642-38527-8_7
[3]
H. Barbosa, M. Barthelemy, G. Ghoshal, C. R. James, M. Lenormand, T. Louail, R. Menezes, J. J. Ramasco, F. Simini, and M. Tomasini. 2018. Human Mobility: Models and Applications. Physics Reports 734 (2018), 1--74. https://doi.org/10.1016/j.physrep.2018.01.001
[4]
H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders, D. Wagner, and R. F. Werneck. 2016. Route Planning in Transportation Networks. In Algorithm Engineering: Selected Results and Surveys. LNCS, Vol. 9220. Springer, 19--80. https://doi.org/10.1007/978-3-319-49487-6_2
[5]
H. Bast, S. Funke, P. Sanders, and D. Schultes. 2007. Fast Routing in Road Networks with Transit Nodes. Science 316, 5824 (2007), 566. https://doi.org/10.1126/science.1137521
[6]
J. L. Bentley. 1975. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 18, 9 (1975), 509--517. https://doi.org/10.1145/361002.361007
[7]
J. Bischoff and M. Maciejewski. 2016. Simulation of City-Wide Replacement of Private Cars with Autonomous Taxis in Berlin. In ANT 2016 (Procedia Computer Science), Vol. 83. Elsevier, 237--244. https://doi.org/10.1016/j.procs.2016.04.121
[8]
V. Buchhold, P. Sanders, and D. Wagner. 2018. Real-Time Traffic Assignment Using Fast Queries in Customizable Contraction Hierarchies. In SEA 2018 (LIPIcs), Vol. 103. Schloss Dagstuhl, 27:1--27:15. https://doi.org/10.4230/LIPIcs.SEA.2018.27
[9]
V. Buchhold, P. Sanders, and D. Wagner. 2019. Real-Time Traffic Assignment Using Engineered Customizable Contraction Hierarchies. ACM Journal of Experimental Algorithmics (2019). Accepted for publication.
[10]
G. Carra, I. Mulalic, M. Fosgerau, and M. Barthelemy. 2016. Modelling the Relation between Income and Commuting Distance. Journal of the Royal Society Interface 13, 119 (2016), 1--8. https://doi.org/10.1098/rsif.2016.0306
[11]
V. Colizza, A. Barrat, M. Barthelemy, A.-J. Valleron, and A. Vespignani. 2007. Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions. PLOS Medicine 4, 1 (2007), 95--110. https://doi.org/10.1371/journal.pmed.0040013
[12]
D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. 2017. Customizable Route Planning in Road Networks. Transportation Science 51, 2 (2017), 566--591. https://doi.org/10.1287/trsc.2014.0579
[13]
C. Demetrescu, A. V. Goldberg, and D. S. Johnson (Eds.). 2009. The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Book, Vol. 74. American Mathematical Society.
[14]
L. Devroye. 1986. Non-Uniform Random Variate Generation. Springer. https://doi.org/10.1007/978-1-4613-8643-8
[15]
J. Dibbelt, B. Strasser, and D. Wagner. 2016. Customizable Contraction Hierarchies. ACM Journal of Experimental Algorithmics 21, 1 (2016), 1.5:1--1.5:49. https://doi.org/10.1145/2886843
[16]
E. W. Dijkstra.1959. A Note on Two Problems in Connexion with Graphs. Numer. Math. 1 (1959), 269--271.
[17]
F. Drews and D. Luxen. 2013. Multi-Hop Ride Sharing. In SoCS 2012. AAAI Press, 71--79.
[18]
M. L. Fredman and R. E. Tarjan. 1987. Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms. J. ACM 34, 3 (1987), 596--615. https://doi.org/10.1145/28869.28874
[19]
J. H. Friedman, J. L. Bentley, and R. A. Finkel. 1977. An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Trans. Math. Software 3, 3 (1977), 209--226. https://doi.org/10.1145/355744.355745
[20]
R. Geisberger, D. Luxen, S. Neubauer, P. Sanders, and L. Volker. 2010. Fast Detour Computation for Ride Sharing. In ATMOS 2010 (OASIcs), Vol. 14. Schloss Dagstuhl, 88--99. https://doi.org/10.4230/OASIcs.ATMOS.2010.88
[21]
R. Geisberger, P. Sanders, D. Schultes, and C. Vetter. 2012. Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Science 46, 3 (2012), 388--404. https://doi.org/10.1287/trsc.1110.0401
[22]
A. V. Goldberg and C. Harrelson. 2005. Computing the Shortest Path: A* Search Meets Graph Theory. In SODA 2005. SIAM, 156--165.
[23]
A. Horni, K. Nagel, and K. W. Axhausen (Eds.). 2016. The Multi-Agent Transport Simulation MATSim. Ubiquity Press. https://doi.org/10.5334/baw
[24]
D. B. Johnson. 1975. Priority Queues with Update and Finding Minimum Spanning Trees. Inform. Process. Lett. 4, 3 (1975), 53--57. https://doi.org/10.1016/0020-0190(75)90001-0
[25]
A. J. Kinderman and J. F. Monahan. 1977. Computer Generation of Random Variables Using the Ratio of Uniform Deviates. ACM Trans. Math. Software 3, 3 (1977), 257--260. https://doi.org/10.1145/355744.355750
[26]
S. A. Lippman and J. J. McCall. 1976. The Economics of Job Search: A Survey. Economic Inquiry 14, 2 (1976), 155--189. https://doi.org/10.1111/j.1465-7295.1976.tb00386.x
[27]
D. Luxen and P. Sanders. 2011. Hierarchy Decomposition for Faster User Equilibria on Road Networks. In SEA 2011 (LNCS), Vol. 6630. Springer, 242--253. https://doi.org/10.1007/978-3-642-20662-7_21
[28]
N. Mallig, M. Kagerbauer, and P. Vortisch. 2013. mobiTopp - A Modular Agent-based Travel Demand Modelling Framework. In ABMTRANS 2013. 854--859. https://doi.org/10.1016/j.procs.2013.06.114
[29]
N. Mallig and P. Vortisch. 2015. Modeling Car Passenger Trips in mobiTopp. In ABMTRANS 2015. 938--943. https://doi.org/10.1016/j.procs.2015.05.169
[30]
A.P. Masucci, J. Serras, A. Johansson, and M. Batty. 2013. Gravity versus Radiation Models: On the Importance of Scale and Heterogeneity in Commuting Flows. Physical Review E 88, 2 (2013), 1--8. https://doi.org/10.1103/PhysRevE.88.022812
[31]
J. J. McCall. 1970. Economics of Information and Job Search. The Quarterly Journal of Economics 84, 1 (1970), 113--126. https://doi.org/10.2307/1879403
[32]
O. Perederieieva, M. Ehrgott, A. Raith, and J. Y. T. Wang. 2015. A Framework for and Empirical Study of Algorithms for Traffic Assignment. Computers & Operations Research 54 (2015), 90--107. https://doi.org/10.1016/j.cor.2014.08.024
[33]
J. Schlaich, U. Heidl, and R. Pohlner. 2011. Verkehrsmodellierung für die Region Stuttgart: Schlussbericht. (2011). unpublished.
[34]
M. Schneider. 1959. Gravity Models and Trip Distribution Theory. Papers in Regional Science 5, 1 (1959), 51--56. https://doi.org/10.1111/j.1435-5597.1959.tb01665.x
[35]
F. Simini, M. C. González, A. Maritan, and A.-L. Barabási. 2012. A Universal Model for Mobility and Migration Patterns. Nature 484, 7392 (2012), 96--100. https://doi.org/10.1038/nature10856
[36]
F. Simini, A. Maritan, and Z. Néda. 2013. Human Mobility in a Continuum Approach. PLOS ONE 8, 3 (2013), 1--8. https://doi.org/10.1371/journal.pone.0060069
[37]
E. Stadlober. 1990. The Ratio of Uniforms Approach for Generating Discrete Random Variates. J. Comput. Appl. Math. 31, 1 (1990), 181--189. https://doi.org/10.1016/0377-0427(90)90349-5
[38]
S. A. Stouffer. 1940. Intervening Opportunities: A Theory Relating Mobility and Distance. American Sociological Review 5, 6 (1940), 845--867. https://doi.org/10.2307/2084520
[39]
M. Tizzoni, P. Bajardi, A. Decuyper, G. Kon Kam King, C. M. Schneider, V. D. Blondel, Z. Smoreda, M. C. González, and V. Colizza. 2014. On the Use of Human Mobility Proxies for Modeling Epidemics. PLOS Computational Biology 10, 7 (2014), 1--15. https://doi.org/10.1371/journal.pcbi.1003716
[40]
Verband Region Stuttgart. 2011. Mobilität und Verkehr in der Region Stuttgart 2009/2010: Regionale Haushaltsbefragung zum Verkehrsverhalten. Schriftenreihe Verband Region Stuttgart 29 (2011), 1--138.
[41]
A. Vespignani. 2012. Modelling Dynamical Processes in Complex Socio-technical Systems. Nature Physics 8, 1 (2012), 32--39. https://doi.org/10.1038/NPHYS2160
[42]
J. W. J. Williams. 1964. Algorithm 232: Heapsort. Commun. ACM 7, 6 (1964), 347--348. https://doi.org/10.1145/512274.512284
[43]
C.-K. Wong and M. C. Easton. 1980. An Efficient Method for Weighted Sampling Without Replacement. SIAM J. Comput. 9, 1 (1980), 111--113. https://doi.org/10.1137/0209009
[44]
Y. Yang, C. Herrera, N. Eagle, and M. C. González. 2014. Limits of Predictability in Commuting Flows in the Absence of Data for Calibration. Scientific Reports 4, 5662 (2014), 1--9. https://doi.org/10.1038/srep05662
[45]
G. K. Zipf. 1946. The P1P2/D Hypothesis: On the Intercity Movement of Persons. American Sociological Review 11, 6 (1946), 677--686. https://doi.org/10.2307/2087063

Cited By

View all
  • (2020)SCPPACM Transactions on Spatial Algorithms and Systems10.1145/34234057:1(1-30)Online publication date: 29-Oct-2020
  • (2019)Real-time Traffic Assignment Using Engineered Customizable Contraction HierarchiesACM Journal of Experimental Algorithmics10.1145/336269324(1-28)Online publication date: 10-Dec-2019

Index Terms

  1. Efficient Calculation of Microscopic Travel Demand Data with Low Calibration Effort

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGSPATIAL '19: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
    November 2019
    648 pages
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 November 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. algorithm engineering
    2. demand calculation
    3. microscopic demand
    4. radiation model
    5. random sampling

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SIGSPATIAL '19
    Sponsor:

    Acceptance Rates

    SIGSPATIAL '19 Paper Acceptance Rate 34 of 161 submissions, 21%;
    Overall Acceptance Rate 257 of 1,238 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2020)SCPPACM Transactions on Spatial Algorithms and Systems10.1145/34234057:1(1-30)Online publication date: 29-Oct-2020
    • (2019)Real-time Traffic Assignment Using Engineered Customizable Contraction HierarchiesACM Journal of Experimental Algorithmics10.1145/336269324(1-28)Online publication date: 10-Dec-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media