Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3351095.3375784acmconferencesArticle/Chapter ViewAbstractPublication PagesfacctConference Proceedingsconference-collections
research-article
Open access

Algorithmic targeting of social policies: fairness, accuracy, and distributed governance

Published: 27 January 2020 Publication History

Abstract

Targeted social policies are the main strategy for poverty alleviation across the developing world. These include targeted cash transfers (CTs), as well as targeted subsidies in health, education, housing, energy, childcare, and others. Due to the scale, diversity, and widespread relevance of targeted social policies like CTs, the algorithmic rules that decide who is eligible to benefit from them---and who is not---are among the most important algorithms operating in the world today. Here we report on a year-long engagement towards improving social targeting systems in a couple of developing countries. We demonstrate that a shift towards the use of AI methods in poverty-based targeting can substantially increase accuracy, extending the coverage of the poor by nearly a million people in two countries, without increasing expenditure. However, we also show that, absent explicit parity constraints, both status quo and AI-based systems induce disparities across population subgroups. Moreover, based on qualitative interviews with local social institutions, we find a lack of consensus on normative standards for prioritization and fairness criteria. Hence, we close by proposing a decision-support platform for distributed governance, which enables a diversity of institutions to customize the use of AI-based insights into their targeting decisions.

Supplementary Material

PDF File (p241-noriega-campero-supp.pdf)
Supplemental material.

References

[1]
Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138--52160.
[2]
World Bank. 2015. World Databank. World Development Indicators (2015).
[3]
Richard Berk, Hoda Heidari, Shahin Jabbari, Michael Kearns, and Aaron Roth. 2017. Fairness in criminal justice risk assessments: the state of the art. arXiv preprint arXiv:1703.09207 (2017).
[4]
Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fairness, Accountability and Transparency. 77--91.
[5]
Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain Gagnon. 2018. Multiple instance learning: A survey of problem characteristics and applications. Pattern Recognition 77 (2018), 329--353.
[6]
Simone Cecchini and Aldo Madariaga. 2011. Programas de Transferencias Condicionadas - Balance de la experiencia reciente en América Latina y el Caribe. https://repositorio.cepal.org/bitstream/handle/11362/27854/S2011032_es.pdf
[7]
IRIS Center. 2009. Manual for the implementation of USAID poverty assessment tools. povertytools. org/training_documents/Manuals/USAID_PAT_Manual_Eng.pdf, accessed 1 (2009).
[8]
Aaron Chalfin, Oren Danieli, Andrew Hillis, Zubin Jelveh, Michael Luca, Jens Ludwig, and Sendhil Mullainathan. 2016. Productivity and selection of human capital with machine learning. American Economic Review 106, 5 (2016), 124--27.
[9]
CONPES. 2016. Declaratoria de importancia estrategica del Sistema de Identificacion de Potenciales Beneficiarios (Sisben IV). https://colaboracion.dnp.gov.co/CDT/Conpes/Econ%C3%B3micos/3877.pdf
[10]
Consejo nacional de política económica y social. República de Colombia. Departamento nacional de planeación. 2016. Declaración de importancia estratégica del sistema de identidicación de potenciales beneficiarios (sisbén iv). https://www.sisben.gov.co/Documents/Compes%20IV/6285-CONPES%203877.pdf
[11]
Sam Corbett-Davies and Sharad Goel. 2018. The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning. arXiv preprint arXiv:1808.00023 (2018).
[12]
Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. 2017. Algorithmic decision making and the cost of fairness. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 797--806.
[13]
Stephanie Cuccaro-Alamin, Regan Foust, Rhema Vaithianathan, and Emily Putnam-Hornstein. 2017. Risk assessment and decision making in child protective services: Predictive risk modeling in context. Children and Youth Services Review 79 (2017), 291--298.
[14]
Alan De Brauw and John Hoddinott. 2011. Must conditional cash transfer programs be conditioned to be effective? The impact of conditioning transfers on school enrollment in Mexico. Journal of Development Economics 96, 2 (2011), 359--370.
[15]
Departamento Administrativo Nacional de Estadística. 2018. Pobreza monetaria en Colombia. Technical Report. https://www.dane.gov.co/files/investigaciones/condiciones_vida/pobreza/2018/bt_pobreza_monetaria_18.pdf
[16]
Ariel Fiszbein and Norbert R Schady. 2009. Conditional cash transfers: reducing present and future poverty. The World Bank.
[17]
Fodesaf. 2018. Ficha: Programa Becas Estudiantiles. https://www.fodesaf.go.cr/prog_soc_selectivos/programacion_anual/fichas_cronogramas/2018/fichas/Ficha%20descriptiva%20FONABE%202018.pdf
[18]
Philip Gillingham. 2015. Predictive risk modelling to prevent child maltreatment and other adverse outcomes for service users: Inside the 'black box'of machine learning. The British Journal of Social Work 46, 4 (2015), 1044--1058.
[19]
Eric Goldman. 2011. Revisiting search engine bias. Wm. Mitchell L. Rev. 38 (2011), 96.
[20]
Rema Hanna and Benjamin A Olken. 2018. Universal basic incomes versus targeted transfers: Anti-poverty programs in developing countries. Journal of Economic Perspectives 32, 4 (2018), 201--26.
[21]
Moritz Hardt, Eric Price, Nati Srebro, et al. 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems. 3315--3323.
[22]
Cheng-Lung Huang, Mu-Chen Chen, and Chieh-Jen Wang. 2007. Credit scoring with a data mining approach based on support vector machines. Expert systems with applications 33, 4 (2007), 847--856.
[23]
Pablo Ibarrarán, Nadin Medellín, Ferdinando Regalia, Marco Stampini, Sandro Parodi, Luis Tejerina, Pedro Cueva, and Madiery Vásquez. 2017. How Conditional Cash Transfers Work. (2017).
[24]
Instituto Mixto de Ayuda Social Subgerencia de Desarrollo Social Sistemas de Información Social. 2019. Informe del Programa Protección y Promoción Social (Del 01 de enero al 31 de diciembre de 2018). http://www.imas.go.cr/sites/default/files/docs/Informe%20PPPS%20anual%20del%202018%20VF%2015-02-2019.pdf
[25]
Instituto Nacional de Estadística y Censos. 2018. Encuesta Nacional de Hogares Julio 2018: Resultados Generales. http://www.inec.go.cr/sites/default/files/documetos-biblioteca-virtual/enaho-2018.pdf
[26]
International Labour Organization. 2018. Women and men in the informal economy. A statistical picture. International Labour Organization.
[27]
Oleksiy Ivaschenko, Claudia Rodríguez, Marina Novikova, Carolina Romero, Thomas Bowen, and Linghui Zhu. 2018. The State of Social Safety Nets. The World Bank.
[28]
Julia Johannsen, Luis Tejerina, and Amanda Glassman. 2009. Conditional cash transfers in Latin America: Problems and opportunities. (2009).
[29]
Jon Kleinberg, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer. 2015. Prediction policy problems. American Economic Review 105, 5 (2015), 491--95.
[30]
Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2016. Inherent trade-offs in the fair determination of risk scores. arXiv preprint arXiv:1609.05807 (2016).
[31]
Roger Koenker and Kevin F Hallock. 2001. Quantile regression. Journal of economic perspectives 15, 4 (2001), 143--156.
[32]
Ilker Kose, Mehmet Gokturk, and Kemal Kilic. 2015. An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Applied Soft Computing 36 (2015), 283 - 299.
[33]
Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems. 4765--4774.
[34]
Linden McBride and Austin Nichols. 2016. Retooling poverty targeting using out-of-sample validation and machine learning. The World Bank Economic Review 32, 3 (2016), 531--550.
[35]
Ministerio de Educación. 2018. Programa Becas Estudiantiles. http://www.siteal.iipe.unesco.org/sites/default/files/sit_accion_files/siteal_costa_rica_0700.pdf
[36]
Minsalud. 2019. Preguntas Frecuentes. https://www.minsalud.gov.co/Lists/FAQ/Tematica.aspx?View={9B7912F5-7A3D-40BF-8BF1-078A2FB53F97}&FilterField1=Tem_x00e1_tica&FilterValue1=Salud&FilterField2=Subtema&FilterValue2=R%C3%A9gimen%20Subsidiado
[37]
Minsalud. 2019. Régimen subsidiado. https://www.minsalud.gov.co/proteccionsocial/Regimensubsidiado/Paginas/regimen-subsidiado.aspx
[38]
Safiya Umoja Noble. 2018. Algorithms of Oppression: How search engines reinforce racism. NYU Press.
[39]
Alejandro Noriega-Campero, Michiel A Bakker, Bernardo Garcia-Bulle, and Alex'Sandy' Pentland. 2019. Active Fairness in Algorithmic Decision Making. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. ACM, 77--83.
[40]
Cathy O'Neil. 2016. Weapons of math destruction: How big data increases inequality and threatens democracy. Broadway Books.
[41]
Registraduría Nacional del Estado Civil. 2015. Resolución 11143 de 2015. https://www.registraduria.gov.co/IMG/pdf/R_RN_2015_11143.pdf
[42]
Stephen A Rhoades. 1993. The herfindahl-hirschman index. Fed. Res. Bull. 79 (1993), 188.
[43]
Rafael Perez Ribas, Guilherme Issamu Hirata, Fabio Veras Soares, et al. 2008. Debating Targeting Methods for Cash Transfers: A Multidimensional Index vs. an Income Proxy for Paraguay? s Tekoporã Programme. Technical Report. International Policy Centre for Inclusive Growth.
[44]
Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Model-agnostic interpretability of machine learning. arXiv preprint arXiv:1606.05386 (2016).
[45]
Cynthia Rudin. 2019. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 1, 5 (2019), 206--215.
[46]
Andrew D Selbst. 2017. Disparate Impact in Big Data Policing. Ga. L. Rev. 52 (2017), 109.
[47]
Sistema Costarricense de Información Jurídica. 2016. Reglamento a la Ley de Desarrollo Social y Asignaciones Familiares. http://www.pgrweb.go.cr/scij/Busqueda/Normativa/Normas/nrm_texto_completo.aspx?param1=NRTC&nValor1=1&nValor2=67607&nValor3=105961&strTipM=TC
[48]
Latanya Sweeney. 2013. Discrimination in online ad delivery. Queue 11, 3 (2013), 10.
[49]
United Nations. 2017. Principles and Recommendations for Population and Housing Censuses, Revision 3. 315 pages.

Cited By

View all
  • (2024)Lazy Data Practices Harm Fairness ResearchProceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency10.1145/3630106.3658931(642-659)Online publication date: 3-Jun-2024
  • (2023)Moving targets: When does a poverty prediction model need to be updated?Proceedings of the 6th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies10.1145/3588001.3609369(117-117)Online publication date: 16-Aug-2023
  • (2023)The methodology of studying fairness perceptions in Artificial IntelligenceInternational Journal of Human-Computer Studies10.1016/j.ijhcs.2022.102954170:COnline publication date: 8-Feb-2023
  • Show More Cited By

Index Terms

  1. Algorithmic targeting of social policies: fairness, accuracy, and distributed governance

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      FAT* '20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency
      January 2020
      895 pages
      ISBN:9781450369367
      DOI:10.1145/3351095
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 27 January 2020

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. AI for social good
      2. algorithmic fairness
      3. cash transfers
      4. proxy means tests
      5. targeted social programs

      Qualifiers

      • Research-article

      Conference

      FAT* '20
      Sponsor:

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)365
      • Downloads (Last 6 weeks)42
      Reflects downloads up to 16 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Lazy Data Practices Harm Fairness ResearchProceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency10.1145/3630106.3658931(642-659)Online publication date: 3-Jun-2024
      • (2023)Moving targets: When does a poverty prediction model need to be updated?Proceedings of the 6th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies10.1145/3588001.3609369(117-117)Online publication date: 16-Aug-2023
      • (2023)The methodology of studying fairness perceptions in Artificial IntelligenceInternational Journal of Human-Computer Studies10.1016/j.ijhcs.2022.102954170:COnline publication date: 8-Feb-2023
      • (2022)Making AI Explainable in the Global South: A Systematic ReviewProceedings of the 5th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies10.1145/3530190.3534802(439-452)Online publication date: 29-Jun-2022

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media