Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Service-oriented Application Composition with Evolutionary Heuristics and Multiple Criteria

Published: 04 October 2019 Publication History

Abstract

The need to create and deploy business application systems rapidly has sparked interest in using web services to compose them. When creating mission-critical business applications through web service compositions, in addition to ensuring that functional requirements are met, designers need to consider the end-to-end reliability, security, performance, and overall cost of the application. As the number of available coarse-grain business services grows, the problem of selecting appropriate services quickly becomes combinatorially explosive for realistic-sized business applications. This article develops a business-process-driven approach for composing service-oriented applications. We use a combination of weights to explore the entire QoS criteria landscape through the use of a multi-criteria genetic algorithm (GA) to identify a Pareto-optimal multidimensional frontier that permits managers to trade off conflicting objectives when selecting a set of services. We illustrate the effectiveness of the approach by applying it to a real-world drop-ship business application and compare its performance to another GA-based approach for service composition.

References

[1]
Y. Achbany, I. J. Jureta, S. Faulkner, and F. Fouss. 2008. Continually learning optimal allocations of services to tasks. IEEE Trans. Serv. Comput. 1, 3 (2008), 141--154.
[2]
W. Ahmed, Y. W. Wu, and W. M. Zheng. 2015. Response time based optimal web service selection. IEEE Trans. Parallel Distrib. Syst. 26, 2 (2015), 551--561.
[3]
A. O. Akingbesote, M. O. Adigun, J. B. Oladosu, and E. Jembere. 2013. A quality of service aware multi-level strategy for selection of optimal web service. In Proceedings of the International Conference on Adaptive Science and Technology (ICAST’13). 1--5.
[4]
M. Alrifai and T. Risse. 2009. Combining global optimization with local selection for efficient QoS-aware service composition. In Proceedings of the 18th International Conference on World Wide Web. 881--890.
[5]
M. A. Amiri, V. Derhami, and M. Ghasemzadeh. 2013. QoS-based web service composition based on genetic algorithm. J. AI Data Mining 1, 2 (2013), 63--73.
[6]
M. A. Amiri and H. Serajzadeh. 2010. QoS aware web service composition based on genetic algorithm. In Proceedings of the5th International Symposium on Telecommunications. 502--507.
[7]
M. Asim, A. Yautsiukhin, A. D. Brucker, T. Baker, Q. Shi, and B. Lempereur. 2018. Security policy monitoring of BPMN‐based service compositions. J. Softw.: Evol. Proc. 30, 3 (2018), 1--17.
[8]
T. Baker, B. Aldawsari, M. Asim, H. Tawfik, Z. Maamar, and R. Buyya. 2018. Cloud-SEnergy: A bin-packing based multi-cloud service broker for energy efficient composition and execution of data-intensive applications. Sustain. Comput.: Inform. Syst. 19 (2018), 242--252.
[9]
T. Baker, M. Asim, H. Tawfik, B. Aldawsari, and R. Buyya. 2017. An energy-aware service composition algorithm for multiple cloud-based IoT applications. J. Netw. Comput. Appl. 89, 96--108.
[10]
T. Baker, A. Taleb-bendiab, M. Randles, and A. Hussien. 2012. Understanding elasticity of cloud services compositions. In Proceedings of the IEEE 5th International Conference on Utility and Cloud Computing.
[11]
T. Baker, A. Taleb-Bendiab, M. Randles, and Y. Karam. 2010. Support for adaptive cloud-based applications via intention modelling. In Proceedings of the 3rd International Symposium on Web Services Zayed University. 235--243.
[12]
B. Benatallah, Q. Z. Sheng, and M. Dumas. 2003. The self-serv environment for web services composition. IEEE Internet Comput. 7, 1 (2003), 40--48.
[13]
A. Benlian, M. Koufaris, and T. Hess. 2011. Service quality in software-as-a-service: Developing the SaaS-Qual measure and examining its role in usage continuance. J. Manag. Inform. Syst. 28, 3 (2011), 85--126.
[14]
R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz. 2006. Heuristics for QoS-aware web service composition. In Proceedings of the IEEE International Conference on Web Services (ICWS’06).
[15]
S. Bhiri, W. Gaaloul, and C. Godart. 2006. Discovering and improving recovery mechanisms of composite web services. In Proceedings of the International Conference on Web Services (ICWS’06). 99--110.
[16]
I. S. Board. 1991. IEEE standard glossary of software engineering terminology. IEEE, New York, NY.
[17]
G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. 2005. QoS-aware replanning of composite web services. In Proceedings of the IEEE International Conference on Web Services (ICWS’05). 121--129.
[18]
G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. 2005. An approach for QoS-aware service composition based on genetic algorithms. In Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO’05). ACM Press, 1069--1075.
[19]
G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. 2005. QoS-aware replanning of composite web services. In Proceedings of the IEEE International Conference on Web Services (ICWS’05). 121--129.
[20]
J. Cardoso. 2002. Stochastic Workflow Reduction Algorithm. Technical Report. LSDIS Lab, Department of Computer Science, University of Georgia, Athens, GA.
[21]
J. Cardoso, J. Miller, A. Sheth, and J. Arnold. 2002. Modeling Quality of Services for Workflows and Web Services Processes. Technical Report. LSDIS Lab, Department of Computer Science, University of Georgia, Athens, GA.
[22]
J. Cardoso, A. P. Sheth, and K. J. Kochut. 2002. Implementing QoS Management for Workflow Systems. Technical Report. LSDIS Lab, Department of Computer Science, University of Georgia, Athens, GA.
[23]
J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. J. Kochut. 2004. Quality of service for workflows and web service processes. Web Seman.: Sci., Serv. Agents World Wide Web 1, 3 (2004), 281--308.
[24]
M. Carman, L. Serafini, and P. Traverso. 2003. Web service composition as planning. In Proceedings of the Workshop on Planning for Web Services. 1636--1642.
[25]
Y. Chen, J. W. Huang, C. Lin, and J. Hu. 2015. A partial selection methodology for efficient QoS-aware service composition. IEEE Trans. Serv. Comput. 8, 3 (2015), 384--397.
[26]
J. Choi, D. L. Nazareth, and H. K. Jain. 2010. Implementing service-oriented architecture in organizations. J. Manag. Inform. Syst. 26, 4 (2010), 253--286.
[27]
J. Clabby. 2002. Web Services Explained, Solutions and Applications for the Real World. Prentice Hall PTR, Upper Saddle River, NJ.
[28]
H. J. Dai, H. Qu, J. H. Zhao, W. H. Dong, and W. J. Xie. 2014. A distributed optimal scheme based on local QoS for web service composition. China Commun. 11, 13 (2014), 142--147.
[29]
J. C. Delano, H. K. Jain, and A. P. Sinha. 2018. System design through the exploration of contemporary web services. ACM Trans. Manag. Inform. Syst. 9, 3 (2018), Article 13.
[30]
M. Dorigo, M. Birattari, and T. Stutzle. 2006. Ant colony optimization—Artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 1, 4 (2006), 28--39.
[31]
M. Dumas, M. La Rosa, J. Mendling, and H. Reijers. 2013. Fundamentals of Business Process Management. Springer-Verlag, Berlin.
[32]
D. H. Elsayed, E. S. Nasr, Alaa El Din M. El Ghazali, and M. H. Gheith. 2017. A new hybrid approach using genetic algorithm and Q-learning for QoS-aware web service composition. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics (AISI’17), S. K. Hassanien A. Gaber T. Tolba M. (Eds.). 537--546.
[33]
J. J. Encarnación. 1964. A note on lexicographical preferences. Econometrica 32, 1--2, 215--217.
[34]
D. B. Fogel. 1994. An introduction to simulated evolutionary optimization. IEEE Trans. Neural Netw. 5, 1 (1994), 3--14.
[35]
Z. W. Geem. 2010. State-of-the-art in the structure of harmony search algorithm. In Recent Advances in Harmony Search Algorithm, Z.W. Geem (Ed.). Springer-Verlag, Berlin, 1--10.
[36]
A. Ghosh and S. Dehuri. 2004. Evolutionary algorithms for multi-criterion optimization: A survey. Int. J. Comput. 8 Inform. Sci. 2, 1 (2004), 38--57.
[37]
R. Grønmo and M. C. Jaeger. 2005. Model-driven methodology for building QoS-optimised web service compositions. In Proceedings of the 5th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS’05). 68--82.
[38]
R. Grønmo and M. C. Jaeger. 2005. Model-driven semantic web service composition. In Proceedings of the 12th Asia-Pacific Software Engineering Conference (APSEC’05).
[39]
R. Grønmo, D. Skogan, I. Solheim, and J. Oldevik. 2004. Model-driven web service development. Int. J. Web Serv. Res. 1, 4 (2004), 1--13.
[40]
J. E. Haddad, M. Manouvrier, and M. Rukoz. 2010. TQoS: Transactional and QoS-aware selection algorithm for automatic web service composition. IEEE Trans. Serv. Comput. 3, 1 (2010), 73--85.
[41]
P. Hajela and C. Y. Lin. 1992. Genetic search strategies in multicriterion optimal-design. Struct. Optim. 4, 2 (1992), 99--107.
[42]
R. Harmon, H. Demirkan, B. Hefley, and N. Auseklis. 2009. Pricing strategies for information technology services: A value-based approach. In Proceedings of the 42nd Hawaii International Conference on System Sciences (HICSS’09). 1--10.
[43]
K. Hashmi, Z. Malik, E. Najmi, A. Alhosban, and B. Medjahed. 2016. A web service negotiation management and QoS dependency modeling framework. ACM Trans. Manag. Inform. Syst. 7, 2 (2016), Article 5.
[44]
O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anagnostopoulos, and I. Vlahavas. 2012. An integrated approach to automated semantic web service composition through planning. IEEE Trans. Serv. Comput. 5, 3 (2012), 319--332.
[45]
Q. He, J. Yan, H. Jin, and Y. Yang. 2014. Quality-aware service selection for service-based systems based on iterative multi-attribute combinatorial auction. IEEE Trans. Softw. Eng. 40, 2 (2014), 192--215.
[46]
J. H. Holland. 1975. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, Ann Arbor, MI.
[47]
M. Hu. 2003. Web services composition, partition, and quality of service in distributed system integration and re-engineering. In Proceedings of the XML Conference and Exposition.
[48]
Y. Huaizhou and W. Fan. 2014. A conflict-free service selection algorithm in the situation of complex service dependency relationships. In Proceedings of the 5th International Conference on Intelligent Systems Design and Engineering Applications (ISDEA’14). 9--13.
[49]
C.-L. Hwang and K. Yoon. 1981. Multiple Attribute Decision Making: Methods and Applications A State-of-the-Art Survey. Springer-Verlag, Berlin.
[50]
H. Ishibuchi and T. Murata. 1998. A multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Trans. Syst. Man Cyber. Part C-Appl. Rev. 28, 3 (1998), 392--403.
[51]
M. C. Jaeger and G. Muhl. 2007. QoS-based selection of services: The implementation of a genetic algorithm. In Proceedings of the 15th ITG/GI Symposium on Communication in Distributed Systems. 1--12.
[52]
M. C. Jaeger, G. Muhl, and S. Golze. 2005. QoS-aware composition of web services: A look at selection algorithms. In Proceedings of the IEEE International Conference on Web Services (ICWS’05). 807--808.
[53]
M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl. 2004. QoS aggregation for web service composition using workflow patterns. In Proceedings of the 8th IEEE International Enterprise Distributed Object Computing.
[54]
H. K. Jain and A. Dutta. 1986. Distributed computer system design: A multicriteria decision-making methodology. Dec. Sci. 17, 4 (1986), 437--453.
[55]
W. Jiang, S. L. Hu, and Z. Y. Liu. 2014. Top k query for QoS-aware automatic service composition. IEEE Trans. Serv. Comput. 7, 4 (2014), 681--695.
[56]
N. Joachim. 2011. A literature review of research on serviceoriented architectures (SOA): Characteristics, adoption determinants, governance mechanisms, and business impact. In Proceedings of the 17th Americas Conference on Information Systems (AMCIS’11).
[57]
D. Karaboga and B. Basturk. 2008. On the performance of artificial bee colony (ABC) algorithm. App. Soft Comput. 8, 1 (2008), 687--697.
[58]
Y. Karam, T. Baker, and A. Taleb-bendiab. 2012. Security support for intention driven elastic cloud computing. In Proceedings of the 6th UKSim/AMSS European Symposium on Computer Modeling and Simulation.
[59]
P. Kendrick, T. Baker, Z. Maamar, A. Hussain, R. Buyya, and D. Al-Jumeily. to appear. An efficient multi-cloud service composition using a distributed multiagent-based, memory-driven approach. IEEE Trans. Sustain. Comput.
[60]
J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of theIEEE International Conference on Neural Networks. 1942--1948.
[61]
K. Kochut, A. Sheth, and J. A. Miller. 1999. Optimizing workflow. Compon. Strat. 1 (1999), 45--57.
[62]
H. Kreger. 2003. Fulfilling the web services promise. Commun. ACM 46, 6 (2003), 29.
[63]
H. Liu, F. Zhong, B. Ouyang, and J. Wu. 2010. An approach for QoS-aware web service composition based on improved genetic algorithm. In Proceedings of the International Conference on Web Information Systems and Mining. 123--128
[64]
S.-C. Liu and S.-S. Weng. 2012. Applying genetic algorithm to select web services based on workflow quality of service. J. Electron. Commer. Res. 13, 2 (2012), 157--172.
[65]
Y. Ma and C. Zhang. 2008. Quick convergence of genetic algorithm for QoS-driven web service selection. Comput. Netw. 52, 5 (2008), 1093--1104.
[66]
N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Issarny. 2009. QoS-aware service composition in dynamic service oriented environments. In Proceedings of the 10th International Middleware Conference (Middleware’09). 123--142.
[67]
F. Mardukhi, N. Nematbakhsh, K. Zamanifar, and A. Barati. 2013. QoS decomposition for service composition using genetic algorithm. Appl. Soft Comput. 13, 7 (2013), 3409--3421.
[68]
B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. 2003. Composing web services on the semantic web. VLDB J. 12, 4 (2003), 333--351.
[69]
E. E. Mills. 1988. Software Metrics - SEI Curriculum Module SEI-CM-12-1.1. Software Engineering Institute, Pittsburgh, PA.
[70]
OASIS 2004. WS-Reliability 1.1. In Web Services Reliable Messaging TC, OASIS Standard, Burlington, WA.
[71]
UN/CEFACT and OASIS. 2001. Business process analysis worksheets 8 guidelines v1.0: Procedures for developing business processes in ebXML. Business Process Team, OASIS, Burlington, WA.
[72]
M. P. Papazoglou and D. Georgakopoulos 2003. Service-oriented computing: Introduction. Commun. ACM 46, 10 (2003), 24--28.
[73]
R. Ramacher and L. Monch. 2015. Service selection with runtime aspects: A hierarchical approach. IEEE Trans. Serv. Comput. 8, 3 (2015), 481--493.
[74]
A. Ramirez, J. A. Parejo, J. R. Romero, S. Segura, and A. Ruiz-Cortes. 2017. Evolutionary composition of QoS-aware web services: A many-objective perspective. Exp. Syst. Appl. 72 (2017), 357--370.
[75]
S. Ran. 2003. A model for web services discovery with QoS. ACM SIGecom Exch. 4 (2003), 1--10.
[76]
P. Rodriguez-Mier, M. Mucientes, and M. Lama. 2017. Hybrid optimization algorithm for large-scale QoS-aware service composition. IEEE Trans. Serv. Comput. 10, 4 (2017), 547--559.
[77]
N. Russell, A. H. M. Ter Hofstede, W. M. P. Van Der Aalst, and N. Mulyar. 2006. Workflow control-flow patterns: A revised view. Technical Report BPM-06-22, BPM Center, Eindhoven, Netherlands.
[78]
A. Sahai, A. Durante, and V. Machiraju. 2002. Towards Automated SLA Management for Web Services. Technical Report HPL-2001-310. HP Laboratories, Palo Alto, CA.
[79]
M. A. Serhani, R. Dssouli, A. Hafid, and H. Sahraoui. 2005. A QoS broker based architecture for efficient web services selection. In Proceedings of the IEEE International Conference on Web Services (ICWS’05). 113--120.
[80]
E. Serrelis and N. Alexandris. 2007. An empirical model for quantifying security based on services. In Proceedings of the International Multi-Conference on Computing in the Global Information Technology (ICCGI’07). 30.
[81]
P. Shahrokh and F. Safi-esfahani. 2016. QoS-based web service composition applying an improved genetic algorithm IGA method. Int. J. Ent. Inform. Syst. 12, 3 (2016), 60--77.
[82]
M. Soni. 2012. Cloud computing and chargeback models. Cloudbook 3, 1 (2012), 42--56.
[83]
A. Strunk. 2010. QoS-aware service composition: A survey. In Proceedings of the 8th IEEE European Conference on Web Services. 67--74.
[84]
S. Su, C. Zhang, and J. Chen. 2007. An improved genetic algorithm for web services selection. In Proceedings of the Distributed Applications and Interoperable Systems Conference (DAIS’17), R. K. Indulska J. (Ed.). 284--295.
[85]
B. Suleiman, C. E. Da Silva, and S. Sakr. 2011. One size does not fit all: A group-based service selection for web-based business processes. In Proceedings of the IEEE Workshops of International Conference on Advanced Information Networking and Applications (WAINA’11). 253--260.
[86]
M. Tang and L. Ai. 2010. A hybrid genetic algorithm for the optimal constrained web service selection problem in web service composition. In Proceedings of the IEEE Congress on Evolutionary Computation. 1--8.
[87]
M. Ter Beek, A. Bucchiarone, and S. Gnesi. 2007. Web service composition approaches: From industrial standards to formal methods. In Proceedings of the 2nd International Conference on Internet and Web Applications and Services (ICIW’07). 15--20.
[88]
W. T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao. 2004. A software reliability model for web services. In Proceedings of the 8th IASTED International Conference on Software Engineering and Applications. 144--149.
[89]
W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. 2003. Workflow patterns. Distrib. Parallel Data. 14, 1 (2003), 5--51.
[90]
W. Vogels. 2003. Web services are not distributed objects. IEEE Internet Comput. 7, 6 (2003), 59--66.
[91]
Z. Yang, C. Shang, Q. Liu, and C. Zhao. 2010. A dynamic web services composition algorithm based on the combination of ant colony algorithm and genetic algorithm. J. Comput. Inform. Syst. 6, 8 (2010), 2617--2622.
[92]
Z. Ye, X. Zhou, and A. Bouguettaya. 2011. Genetic algorithm based QoS-aware service compositions in cloud computing. In Proceedings of the International Conference on Database Systems for Advanced Applications (DASFAA’11). 321--334.
[93]
M. Zeleny. 1976. The theory of the displaced ideal. In Multiple Criteria Decision Making Kyoto 1975, M. Zeleny (Ed.) Springer-Verlag, Berlin, 153--206.
[94]
L. P. Zhao, Y. Z. Ren, M. C. Li, and K. Sakurai. 2012. Flexible service selection with user-specific QoS support in service-oriented architecture. J. Netw. Comput. Appl. 35, 3 (2012), 962--973.
[95]
H. Zo, D. L. Nazareth, and H. K. Jain. 2010. Security and performance in service-oriented applications: Trading off competing objectives. Dec. Supp. Syst. 50, 1 (2010), 336--346.
[96]
H. Zo, D. L. Nazareth, and H. K. Jain. 2012. End-to-end reliability of service oriented applications. Inform. Syst. Front. 14, 5 (2012), 971--986.
[97]
G. B. Zou, Q. Lu, Y. X. Chen, R. Y. Huang, Y. Xu, and Y. Xiang. 2014. QoS-aware dynamic composition of web services using numerical temporal planning. IEEE Trans. Serv. Comput. 7, 1 (2014), 18--31.

Cited By

View all
  • (2023)A Group Teaching Optimization-Based Approach for Energy and QoS-Aware Internet of Things Services CompositionJournal of Network and Systems Management10.1007/s10922-023-09779-432:1Online publication date: 28-Oct-2023
  • (2022)WSFeIn: A Novel, Dynamic Web Service Composition Adapter for Cloud-Based Mobile ApplicationSustainability10.3390/su14211394614:21(13946)Online publication date: 27-Oct-2022
  • (2022)The architectural design and implementation of a digital platform for Industry 4.0 SME collaborationComputers in Industry10.1016/j.compind.2022.103623138(103623)Online publication date: Jun-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Management Information Systems
ACM Transactions on Management Information Systems  Volume 10, Issue 3
Research Commentary and Regular Paper
September 2019
83 pages
ISSN:2158-656X
EISSN:2158-6578
DOI:10.1145/3361142
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 October 2019
Accepted: 01 August 2019
Revised: 01 June 2019
Received: 01 October 2018
Published in TMIS Volume 10, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Service-oriented applications
  2. multiple criteria decision making

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)13
  • Downloads (Last 6 weeks)2
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)A Group Teaching Optimization-Based Approach for Energy and QoS-Aware Internet of Things Services CompositionJournal of Network and Systems Management10.1007/s10922-023-09779-432:1Online publication date: 28-Oct-2023
  • (2022)WSFeIn: A Novel, Dynamic Web Service Composition Adapter for Cloud-Based Mobile ApplicationSustainability10.3390/su14211394614:21(13946)Online publication date: 27-Oct-2022
  • (2022)The architectural design and implementation of a digital platform for Industry 4.0 SME collaborationComputers in Industry10.1016/j.compind.2022.103623138(103623)Online publication date: Jun-2022
  • (2021)A genetic algorithm with an elitism replacement method for solving the nonfunctional web service composition under fuzzy QoS parameters2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS)10.1109/AIMS52415.2021.9466057(1-7)Online publication date: 28-Apr-2021
  • (2020)Goal Modelling Meets Service Choreography: A Graph Transformation Approach2020 IEEE 24th International Enterprise Distributed Object Computing Conference (EDOC)10.1109/EDOC49727.2020.00014(30-39)Online publication date: Oct-2020

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media