Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Toward a Uniform Theory of Effectful State Machines

Published: 13 March 2020 Publication History

Abstract

Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g., finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs’s notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable, and various subclasses of context free languages (e.g., deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.

References

[1]
Stål O. Aanderaa. 1974. On k-tape versus (k – 1)-tape real time computation. Complex. Comput. 7 (1974), 75--96.
[2]
Jiří Adámek, Horst Herrlich, and George Strecker. 1990. Abstract and Concrete Categories. John Wiley 8 Sons Inc., New York.
[3]
Jiří Adámek, Stefan Milius, and Jiří Velebil. 2006. Iterative algebras at work. Math. Struct. Comput. Sci. 16, 6 (2006), 1085--1131.
[4]
Jos Baeten, Bas Luttik, and Paul Tilburg. 2011. Reactive turing machines. In Proceedings of the Future Technologies Conference (FCT’11), Olaf Owe, Martin Steffen, and JanArne Telle (Eds.). LNCS, Vol. 6914. Springer-Verlag, 348--359.
[5]
Falk Bartels. 2004. On Generalized Coinduction and Probabilistic Specification Formats. Ph.D. Dissertation. Vrije Universiteit Amsterdam.
[6]
Marcello M. Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurriaan Rot. 2015. Presenting distributive laws. Log. Methods Comput. Sci. 11, 3:2 (2015), 23.
[7]
Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. 2013. Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans. Comput. Log. 14, 1, Article 7 (2013), 52 pages.
[8]
Marcello M. Bonsangue, Jan J. M. M. Rutten, and Joost Winter. 2012. Defining context-free power series coalgebraically. In Proceedings of the Conference on Algebra and Coalgebra in Computer Science (CALCO’12). 20--39.
[9]
Ronavld V. Book. 1975. On the Chomsky-Schützenberger Theorem. Technical Report 33. Department of Computer Science, Yale University.
[10]
Ronald V. Book and Sheila A. Greibach. 1970. Quasi-realtime languages. Math. Syst. Theory 4, 2 (1970), 97--111.
[11]
Janusz A. Brzozowski. 1964. Derivatives of regular expressions. J. ACM 11, 4 (1964), 481--494.
[12]
Dion Coumans and Bart Jacobs. 2013. Scalars, monads, and categories. In Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse., Chris Heunen; Mehrnoosh Sadrzadeh and Edward Grefenstette (Eds.). Oxford University Press, 184--216.
[13]
Bruno Courcelle. 1983. Fundamental properties of infinite trees. Theor. Comput. Sci. 25, 2 (1983), 95--169.
[14]
Fredrik Dahlqvist and Renato Neves. 2017. Program Semantics as Kleisli Representations. Retrieved from https://fredrikdahlqvist.files.wordpress.com/2015/08/dahlqvist_neves1.pdf.
[15]
M. Droste, W. Kuich, and H. Vogler (Eds.). 2009. Handbook of Weighted Automata. Springer.
[16]
Manfred Droste, Werner Kuich, and Heiko Vogler (Eds.). 2009. Handbook of Weighted Automata. Springer.
[17]
Samuel Eilenberg. 1974. Automata, Languages, and Machines. Pure and Applied Mathematics, Vol. A. Academic Press.
[18]
Marcelo P. Fiore, Eugenio Moggi, and Davide Sangiorgi. 2002. A fully abstract model for the π-calculus. Inf. Comput. 179, 1 (2002), 76--117.
[19]
Peter Freyd. 1966. Algebra valued functors in general and tensor products in particular. Colloq. Math. 14 (1966), 89--106.
[20]
Seymour Ginsburg and Michael A. Harrison. 1968. One-way nondeterministic real-time list-storage languages. J. ACM 15, 3 (1968), 428--446.
[21]
Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. 1977. Initial algebra semantics and continuous algebras. J. ACM 24, 1 (1977), 68--95.
[22]
Sergey Goncharov. 2013. Trace semantics via generic observations. In Proceedings of the Conference on Algebra and Coalgebra in Computer Science (CALCO’13) (LNCS), Reiko Heckel and Stefan Milius (Eds.), Vol. 8089. 158--174.
[23]
Sergey Goncharov, Stefan Milius, and Alexandra Silva. 2014. Towards a coalgebraic chomsky hierarchy. In Proceedings of the 8th IFIP International Conference on Theoretical Computer Science (TCS'14), Vol. 8705. Springer, 265--280.
[24]
Michael A. Harrison and Ivan M. Havel. 1972. On a family of deterministic grammars. In In Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP’72). 413--441.
[25]
Juris Hartmanis. 1967. Context-free languages and Turing machine computations. In Proceedings of the Symposium on Applied Mathematics. 42--51.
[26]
Frederick C. Hennie. 1966. On-line turing machine computations. IEEE Trans. Electr. Comput. EC-15, 1 (1966), 35--44.
[27]
John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2001. Introduction to Automata Theory, Languages, and Computation (2nd ed.). Addison-Wesley.
[28]
John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory, Languages, and Computation (3rd ed.). Addison-Wesley Longman Publishing Co., Inc., Boston, MA.
[29]
Martin Hyland, Paul Blain Levy, Gordon D. Plotkin, and John Power. 2007. Combining algebraic effects with continuations. Theor. Comput. Sci. 375, 1–3 (2007), 20--40.
[30]
Bart Jacobs. 2006. A bialgebraic review of deterministic automata, regular expressions and languages. In Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday (LNCS), K. Futatsugi, J.-P. Jouannaud, and J. Meseguer (Eds.), Vol. 4060. 375--404.
[31]
Bart Jacobs, Alexandra Silva, and Ana Sokolova. 2012. Trace semantics via determinization. In Proceedings of the Coordinate Metrology Society Conference (CMCS’12). LNCS, Vol. 7399. Springer, 109--129.
[32]
Mark Kambites. 2009. Formal languages and groups as memory. Commun. Algebr. 37, 1 (2009), 193--208.
[33]
Bartek Klin. 2011. Bialgebras for structural operational semantics: An introduction. Theor. Comput. Sci. 412, 38 (2011), 5043--5069.
[34]
Anders Kock. 1970. On double dualization monads. Math. Scand. 27 (1970), 151--165.
[35]
Anders Kock. 1972. Strong functors and monoidal monads. Arch. Math. 23, 1 (1972), 113--120.
[36]
Mark V. Lawson. 1999. Inverse Semigroups: The Theory of Partial Symmetries. World Scientific, Singapore.
[37]
William Lawvere. 1963. Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci. U.S.A. 50, 5 (1963), 869--872.
[38]
Ming Li. 1985. Simulating two pushdown stores by one tape in O(n1.5√log n) time. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science. 56--64.
[39]
Saunders MacLane. 1998. Categories for the Working Mathematician (2nd ed.). Springer.
[40]
Stefan Milius. 2010. A sound and complete calculus for finite stream circuits. In Proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS’10). IEEE Computer Society, 449--458.
[41]
Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. 2016. A new foundation for finitary corecursion: The locally finite fixpoint and its properties. In Proceedings of the International Conference on Foundations of Software Science and Computation Structures Conference (FoSSaCS’16) (LNCS), Bart Jacobs and Christof Löding (Eds.), Vol. 9634. Springer, 107--125.
[42]
Eugenio Moggi. 1991. Notions of computation and monads. Inf. Comput. 93 (1991), 55--92.
[43]
Robert Myers. 2013. Rational Coalgebraic Machines in Varieties: Languages, Completeness and Automatic Proofs. Ph.D. Dissertation. Imperial College London.
[44]
Alexander Okhotin. 2012. Non-erasing variants of the Chomsky–Schützenberger theorem. In Developments in Language Theory, Hsu-Chun Yen and OscarH. Ibarra (Eds.). LNCS, Vol. 7410. Springer, 121--129.
[45]
Dirk Pattinson and Lutz Schröder. 2016. Program equivalence is coinductive. In Proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS’16). IEEE Computer Society.
[46]
Simon Peyton Jones (Ed.). 2003. The Haskell 98 Language and Libraries: The Revised Report. Vol. 13. 0–255 pages.
[47]
Gordon Plotkin and John Power. 2002. Notions of computation determine monads. In Proceedings of the Foundations of Software Science and Computation Structure Conference (FoSSaCS’02) (LNCS), Vol. 2303. Springer, 342--356.
[48]
Gordon Plotkin and John Power. 2003. Algebraic operations and generic effects. Appl. Cat. Struct. 11 (2003), 69--94.
[49]
Gordon D. Plotkin. 1975. Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci. 1 (1975), 125--159.
[50]
John Power and Olha Shkaravska. 2004. From comodels to coalgebras: State and arrays. In Proceedings of the Coordinate Metrology Society Conference (CMCS’04) (Proceedings of the ENTCS), Vol. 106. 297--314.
[51]
Michael O. Rabin. 1963. Probabilistic automata. Inf. Contr. 6, 3 (1963), 230--245.
[52]
M. O. Rabin and D. Scott. 1959. Finite automata and their decision problems. IBM J. Res. Dev. 3, 2 (Apr. 1959), 114--125.
[53]
Elaine Render and Mark Kambites. 2009. Rational subsets of polycyclic monoids and valence automata. Inf. Comput. 207, 11 (2009), 1329--1339.
[54]
Grzegorz Rozenberg and Arto Salomaa (Eds.). 1997. Handbook of Formal Languages, Vol. 1: Word, Language, Grammar. Springer-Verlag, New York, NY.
[55]
Jan J. M. M. Rutten. 2000. Universal coalgebra: A theory of systems. Theor. Comput. Sci. 249 (2000), 3--80.
[56]
Jan J. M. M. Rutten. 2003. Behavioural differential equations: A coinductive calculus of streams, automata, and power series. Theor. Comput. Sci. 308, 1–3 (2003), 1--53.
[57]
Jacques Sakarovitch. 2009. Elements of Automata Theory. Cambridge University Press.
[58]
Roberto Segala. 1995. Modelling and Verification of Randomized Distributed Real-Time Systems. Ph.D. Dissertation. Massachusetts Institute of Technology.
[59]
Roberto Segala and Nancy A. Lynch. 1995. Probabilistic simulations for probabilistic processes. Nord. J. Comput. 2, 2 (1995), 250--273.
[60]
Alexandra Silva. 2010. Kleene Coalgebra. Ph.D. Dissertation. Radboud University, Nijmegen.
[61]
Alexandra Silva, Filippo Bonchi, Marcello Bonsangue, and Jan Rutten. 2013. Generalizing determinization from automata to coalgebras. Log. Methods Comput. Sci. 9, 1:9 (2013), 27 pp.
[62]
Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. 2011. Quantitative kleene coalgebras. Inf. Comput. 209, 5 (2011), 822--849.
[63]
Alexandra Silva, Marcello M. Bonsangue, and Jan J. M. M. Rutten. 2010. Non-deterministic Kleene coalgebras. Log. Methods Comput. Sci. 6, 3:23 (2010), 39.
[64]
Don Syme, Adam Granicz, and Antonio Cisternino. 2007. Expert F#. Apress.
[65]
Terese. 2003. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, Vol. 55. Cambridge University Press.
[66]
Daniele Turi and Gordon D. Plotkin. 1997. Towards a mathematical operational semantics. In Proceedings of the ACM/IEEE Symposium on Logic in Computer Science (LICS’97). 280--291.
[67]
Daniele Varacca and Glynn Winskel. 2006. Distributing probability over non-determinism. Math. Struct. Comput. Sci. 16 (2006), 87--113.
[68]
Joost Winter. 2014. Coalgebraic Characterizations of Automata-Theoretic Classes. Ph.D. Dissertation. Radboud University, Nijmegen.
[69]
Joost Winter, Marcello M. Bonsangue, and Jan J. M. M. Rutten. 2013. Coalgebraic characterizations of context-free languages. Log. Methods Comput. Sci. 9, 3:14 (2013), 39 pp.
[70]
Georg Zetzsche. 2016. Monoids as Storage Mechanisms. Ph.D. Dissertation.

Cited By

View all
  • (2022)Coalgebraic Semantics for Nominal AutomataCoalgebraic Methods in Computer Science10.1007/978-3-031-10736-8_3(45-66)Online publication date: 23-Jul-2022
  • (2021)The costructure–cosemantics adjunction for comodels for computational effectsMathematical Structures in Computer Science10.1017/S0960129521000219(1-46)Online publication date: 6-Dec-2021

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Computational Logic
ACM Transactions on Computational Logic  Volume 21, Issue 3
July 2020
407 pages
ISSN:1529-3785
EISSN:1557-945X
DOI:10.1145/3384674
  • Editor:
  • Orna Kupferman
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 March 2020
Accepted: 01 November 2019
Received: 01 November 2019
Published in TOCL Volume 21, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Kleene theorem
  2. Monads
  3. bialgebraic semantics
  4. coalgebras
  5. side-effects

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)4
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Coalgebraic Semantics for Nominal AutomataCoalgebraic Methods in Computer Science10.1007/978-3-031-10736-8_3(45-66)Online publication date: 23-Jul-2022
  • (2021)The costructure–cosemantics adjunction for comodels for computational effectsMathematical Structures in Computer Science10.1017/S0960129521000219(1-46)Online publication date: 6-Dec-2021

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media