Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3373207.3404060acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Computing the N-th term of a q-holonomic sequence

Published: 27 July 2020 Publication History

Abstract

In 1977, Strassen invented a famous baby-step / giant-step algorithm that computes the factorial N! in arithmetic complexity quasi-linear in [EQUATION]. In 1988, the Chudnovsky brothers generalized Strassen's algorithm to the computation of the N-th term of any holonomic sequence in the same arithmetic complexity. We design q-analogues of these algorithms. We first extend Strassen's algorithm to the computation of the q-factorial of N, then Chudnovskys' algorithm to the computation of the N-th term of any q-holonomic sequence. Both algorithms work in arithmetic complexity quasi-linear in [EQUATION]. We describe various algorithmic consequences, including the acceleration of polynomial and rational solving of linear q-differential equations, and the fast evaluation of large classes of polynomials, including a family recently considered by Nogneng and Schost.

References

[1]
S. A. Abramov, M. Bronstein, and M. Petkovšek. On polynomial solutions of linear operator equations. In ISSAC'95, pages 290--296. ACM, 1995.
[2]
S. A. Abramov. Rational solutions of linear difference and q-difference equations with polynomial coefficients. Programmirovanie, (6):3--11, 1995.
[3]
S. A. Abramov, P. Paule, and M. Petkovšek. q-hypergeometric solutions of q-difference equations. Discrete Math., 180(1--3):3--22, 1998.
[4]
M. Aldaz, G. Matera, J. L. Montaña, and L. M. Pardo. A new method to obtain lower bounds for polynomial evaluation. TCS, 259(1--2):577--596, 2001.
[5]
G. E. Andrews. The theory of partitions. Addison-Wesley, Reading, 1976.
[6]
D. Bar-Natan and S. Garoufalidis. On the Melvin-Morton-Rozansky conjecture. Invent. Math., 125(1):103--133, 1996.
[7]
M. Beeler, R. Gosper, and R. Schroeppel. HAKMEM. Artificial Intelligence Memo No. 239. MIT, 1972. http://www.inwap.com/pdp10/hbaker/hakmem/algorithms.
[8]
D. J. Bernstein. Fast multiplication and its applications. In Algorithmic number theory: lattices, number fields, curves and cryptography, MSRIP 44:325--384. 2008.
[9]
D. J. Bernstein, L. De Feo, A. Leroux, and B. Smith. Faster computation of isogenies of large prime degree. Preprint, 2020. https://eprint.iacr.org/2020/341.
[10]
J.-P. Bézivin. Les suites q-récurrentes linéaires. Comp. Math., 80:285--307, 1991.
[11]
L. I. Bluestein. A linear filtering approach to the computation of the discrete Fourier transform. IEEE Trans. Electroacoustics, AU-18:451--455, 1970.
[12]
H. Böing and W. Koepf. Algorithms for q-hypergeometric summation in computer algebra. J. Symbolic Comput., 28(6):777--799, 1999.
[13]
A. Borodin and S. Cook. On the number of additions to compute specific polynomials. SIAM J. Comput., 5(1):146--157, 1976.
[14]
A. Bostan, X. Caruso, and É. Schost. A fast algorithm for computing the characteristic polynomial of the p-curvature. In ISSAC'14, pages 59--66. ACM, 2014.
[15]
A. Bostan, X. Caruso, and É. Schost. A fast algorithm for computing the p-curvature. In ISSAC'15, pages 69--76. ACM, 2015.
[16]
A. Bostan, X. Caruso, and É. Schost. Computation of the similarity class of the p-curvature. In ISSAC'16, pages 111--118. ACM, 2016.
[17]
A. Bostan, F. Chyzak, T. Cluzeau, and B. Salvy. Low complexity algorithms for linear recurrences. In ISSAC'06, pages 31--38. ACM, 2006.
[18]
A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for polynomial solutions of linear differential equations. In ISSAC'05, pages 45--52. ACM, 2005.
[19]
A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput., 36(6):1777--1806, 2007.
[20]
A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In ISSAC'03, pages 37--44. ACM, 2003.
[21]
A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. J. Complexity, 21(4):420--446, 2005.
[22]
A. Bostan and É. Schost. Fast algorithms for differential equations in positive characteristic. In ISSAC'09, pages 47--54. ACM, 2009.
[23]
P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume 315 of Grundlehren der Mathematischen Wissenschaften. Springer, 1997.
[24]
D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Inform., 28(7):693--701, 1991.
[25]
P. Cartier. Démonstration "automatique" d'identités et fonctions hypergéométriques (d'après D. Zeilberger). Astérisque, (206):41--91, 1992. S. Bourbaki.
[26]
D. V. Chudnovsky and G. V. Chudnovsky. Approximations and complex multiplication according to Ramanujan. In Ramanujan revisited (Urbana-Champaign, Ill., 1987), pages 375--472. Academic Press, Boston, MA, 1988.
[27]
F. Chyzak. Gröbner bases, symbolic summation and symbolic integration. In Gröbner bases and applications, volume LMS LN 251:32--60. CUP, 1998.
[28]
F. Chyzak. An extension of Zeilberger's fast algorithm to general holonomic functions. Discrete Math., 217(1--3):115--134, 2000.
[29]
L. Di Vizio. Arithmetic theory of q-difference equations: the q-analogue of Grothendieck-Katz's conjecture on p-curvatures. Invent. Math., 150:517--578, 2002.
[30]
L. Di Vizio, J.-P. Ramis, J. Sauloy, and C. Zhang. Équations aux q-différences. Gaz. Math., (96):20--49, 2003.
[31]
T. Ekedahl and G. van der Geer. Cycle classes on the moduli of K3 surfaces in positive characteristic. Selecta Math. (N.S.), 21(1):245--291, 2015.
[32]
T. Ernst. A comprehensive treatment of q-calculus. Birkhäuser/Springer, 2012.
[33]
J. Fürlinger and J. Hofbauer. q-Catalan numbers. JCTA, 40(2):248--264, 1985.
[34]
F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC'14, pages 296--303. ACM, 2014.
[35]
S. Garoufalidis and C. Koutschan. Irreducibility of q-difference operators and the knot 74. Algebr. Geom. Topol., 13(6):3261--3286, 2013.
[36]
S. Garoufalidis and T. T. Q. Lê. The colored Jones function is q-holonomic. Geom. Topol., 9:1253--1293, 2005.
[37]
S. Garoufalidis and T. T. Q. Lê. A survey of q-holonomic functions. Enseign. Math., 62(3--4):501--525, 2016.
[38]
J. von zur Gathen and J. Gerhard. Modern computer algebra. CUP, 3rd ed., 2013.
[39]
I. Gessel. A noncommutative generalization and q-analog of the Lagrange inversion formula. Trans. Amer. Math. Soc., 257(2):455--482, 1980.
[40]
G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm. I. Appl. Algebra Engrg. Comm. Comput., 14(6):415--438, 2004.
[41]
D. Harvey. Counting points on hyperelliptic curves in average polynomial time. Ann. of Math. (2), 179(2):783--803, 2014.
[42]
J. Heintz and M. Sieveking. Lower bounds for polynomials with algebraic coefficients. TCS, 11(3):321--330, 1980.
[43]
P. A. Hendriks. An algorithm for computing a standard form for second-order linear q-difference equations. J. Pure Appl. Algebra, 117/118:331--352, 1997.
[44]
J. Hua. Counting representations of quivers over finite fields. J. Algebra, 226(2):1011--1033, 2000.
[45]
M. Kauers and C. Koutschan. A Mathematica package for q-holonomic sequences and power series. Ramanujan J., 19(2):137--150, 2009.
[46]
D. E. Khmel' nov. Improved algorithms for solving difference and q-difference equations. Programmirovanie, (2):70--78, 2000.
[47]
A. A. Kirillov and A. Melnikov. On a remarkable sequence of polynomials. In Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), volume 2 of Sémin. Congr., pages 35--42. Soc. Math. France, Paris, 1997.
[48]
R. Koekoek, P. A. Lesky, and R. F. Swarttouw. Hypergeometric orthogonal polynomials and their q-analogues. Monographs in Mathematics. Springer, 2010.
[49]
T. H. Koornwinder. On Zeilberger's algorithm and its q-analogue. J. Comput. Appl. Math., 48(1--2):91--111, 1993.
[50]
C. Koutschan. A fast approach to creative telescoping. Math. Comput. Sci., 4(2--3):259--266, 2010.
[51]
H. Labrande. Computing Jacobi's theta in quasi-linear time. Math. Comp., 87(311):1479--1508, 2018.
[52]
R. J. Lipton. Polynomials with 0 -- 1 coefficients that are hard to evaluate. SIAM J. Comput., 7(1):61--69, 1978.
[53]
S. Morier-Genoud and V. Ovsienko. On q-deformed real numbers. Exp. Math., pages 1--9, 2019. To appear.
[54]
D. Nogneng and É. Schost. On the evaluation of some sparse polynomials. Math. Comp., 87(310):893--904, 2018.
[55]
A. Ostrowski. On two problems in abstract algebra connected with Horner's rule. In Studies in mathematics and mechanics presented to Richard von Mises, pages 40--48. Academic Press Inc., 1954.
[56]
I. Pak. Partition bijections, a survey. Ramanujan J., 12(1):5--75, 2006.
[57]
V. Y. Pan. Methods of computing values of polynomials. Russian Mathematical Surveys, 21(1):105--136, 1966.
[58]
M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to evaluate polynomials. SIAM J. Comput., 2:60--66, 1973.
[59]
P. Paule and S. Radu. Rogers-Ramanujan functions, modular functions, and computer algebra. In Advances in computer algebra, PROMS 226, 229--280, 2018.
[60]
P. Paule and A. Riese. A Mathematica q-analogue of Zeilberger's algorithm based on an algebraically motivated approach to q-hypergeometric telescoping. In Special functions, q-series and related topics, FIC 14:179--210. AMS, 1997.
[61]
M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A K Peters, 1996.
[62]
J. M. Pollard. Theorems on factorization and primality testing. Proc. Cambridge Philos. Soc., 76:521--528, 1974.
[63]
L. R. Rabiner, R. W. Schafer, and C. M. Rader. The chirp z-transform algorithm and its application. Bell System Tech. J., 48:1249--1292, 1969.
[64]
A. Riese. qMultiSum---a package for proving q-hypergeometric multiple summation identities. J. Symbolic Comput., 35(3):349--376, 2003.
[65]
C. Sabbah. Systèmes holonomes d'équations aux q-différences. In D-modules and microlocal geometry (Lisbon, 1990), pages 125--147. de Gruyter, 1993.
[66]
C.-P. Schnorr. improved lower bounds on the number of multiplications / divisions which are necessary to evaluate polynomials. TCS, 7(3):251--261, 1978.
[67]
P. Scholze. Canonical q-deformations in arithmetic geometry. Ann. Fac. Sci. Toulouse Math. (6), 26(5):1163--1192, 2017.
[68]
A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Informatica, 7:395--398, 1977.
[69]
T. Sprenger and W. Koepf. Algorithmic determination of q-power series for q-holonomic functions. J. Symbolic Comput., 47(5):519--535, 2012.
[70]
V. Strassen. Polynomials with rational coefficients which are hard to compute. SIAM J. Comput., 3:128--149, 1974.
[71]
V. Strassen. Einige Resultate über Berechnungskomplexität. Jber. Deutsch. Math.-Verein., 78(1):1--8, 1976/77.
[72]
T. Tao, E. Croot, III, and H. Helfgott. Deterministic methods to find primes. Math. Comp., 81(278):1233--1246, 2012.
[73]
M. van der Put and M. F. Singer. Galois theory of linear differential equations, volume 328 of Grundlehren der Mathematischen Wissenschaften. Springer, 2003.
[74]
H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric (ordinary & q) multisum/integral identities. Invent. Math., 108(3):575--633, 1992.
[75]
K.-W. Yang. On the product Πn ≥ 1 (1 + qn x + q2n x2). J. Austral. Math. Soc. Ser. A, 48(1):148--151, 1990.
[76]
D. Zagier. Elliptic modular forms and their applications. In The 1-2-3 of modular forms, Universitext, pages 1--103. Springer, 2008.
[77]
D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32(3):321--368, 1990.

Cited By

View all
  • (2022)Fast Computation of the N-th Term of a q-Holonomic Sequence and ApplicationsJournal of Symbolic Computation10.1016/j.jsc.2022.07.008Online publication date: Aug-2022
  • (2022)A Fast Algorithm for Computing the Number of Magic SeriesAnnals of Combinatorics10.1007/s00026-022-00584-526:2(511-532)Online publication date: 28-Apr-2022
  • (2021)Efficient q-Integer Linear Decomposition of Multivariate PolynomialsJournal of Symbolic Computation10.1016/j.jsc.2021.02.001Online publication date: Feb-2021

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '20: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation
July 2020
480 pages
ISBN:9781450371001
DOI:10.1145/3373207
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. q-factorial
  2. q-holonomic sequences
  3. algorithms
  4. complexity

Qualifiers

  • Research-article

Funding Sources

Conference

ISSAC '20

Acceptance Rates

ISSAC '20 Paper Acceptance Rate 58 of 102 submissions, 57%;
Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Fast Computation of the N-th Term of a q-Holonomic Sequence and ApplicationsJournal of Symbolic Computation10.1016/j.jsc.2022.07.008Online publication date: Aug-2022
  • (2022)A Fast Algorithm for Computing the Number of Magic SeriesAnnals of Combinatorics10.1007/s00026-022-00584-526:2(511-532)Online publication date: 28-Apr-2022
  • (2021)Efficient q-Integer Linear Decomposition of Multivariate PolynomialsJournal of Symbolic Computation10.1016/j.jsc.2021.02.001Online publication date: Feb-2021

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media