Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3373718.3394750acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Temporal Constraint Satisfaction Problems in Fixed-Point Logic

Published: 08 July 2020 Publication History

Abstract

Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in fixed-point logic with counting. The border between the two regimes can be described by a strong height-one Maltsev condition. For infinite-domain CSPs, the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (Q; <); such CSPs are called temporal CSPs and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the Boolean rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.

References

[1]
A. Atserias, A. Bulatov, and A. Dawar. 2009. Affine systems of equations and counting infinitary logic. Theoretical Computer Science 410, 18 (2009), 1666--1683.
[2]
A. Atserias and A. Dawar. 2019. Definable inapproximability: New challenges for duplicator. Journal of Logic and Computation 29, 8 (2019), 1185--1210. Available at arXiv:1806.11307.
[3]
L. Barto, M. Kompatscher, M. Olšák, T. Van Pham, and M. Pinsker. 2019. Equations in oligomorphic clones and the Constraint Satisfaction Problem for ω-categorical structures. Journal of Mathematical Logic 19, 2 (2019), 1950010. available at arXiv:1612.07551.
[4]
L. Barto and M. Kozik. 2009. Constraint Satisfaction Problems of Bounded Width. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, Atlanta, GA, USA, 595--603.
[5]
L. Barto, J. Opršal, and M. Pinsker. 2018. The wonderland of reflections. Israel Journal of Mathematics 223, 1 (2018), 363--398.
[6]
A. Blass, Y. Gurevich, and S. Shelah. 2002. On polynomial time computation over unordered structures. The Journal of Symbolic Logic 67, 3 (2002), 1093--1125.
[7]
M. Bodirsky. 2012. Complexity Classification in Infinite-Domain Constraint Satisfaction. (2012). Mémoire d'habilitation à diriger des recherches, Université Diderot -- Paris 7. Available at arXiv:1201.0856.
[8]
M. Bodirsky, H. Chen, and M. Wrona. 2014. Tractability of quantified temporal constraints to the max. International Journal of Algebra and Computation 24, 08 (2014), 1141--1156.
[9]
M. Bodirsky and V. Dalmau. 2013. Datalog and constraint satisfaction with infinite templates. J. Comput. System Sci. 79, 1 (2013), 79--100.
[10]
M. Bodirsky and P. Jonsson. 2017. A model-theoretic view on qualitative constraint reasoning. Journal of Artificial Intelligence Research 58 (2017), 339--385.
[11]
M. Bodirsky and J. Kára. 2010. The complexity of temporal constraint satisfaction problems. Journal of the ACM (JACM) 57, 2 (2010), 9.
[12]
M. Bodirsky and J. Kára. 2010. A fast algorithm and Datalog Inexpressibility for temporal reasoning. ACM Transactions on Computational Logic 11, 3 (2010), 1--21.
[13]
M. Bodirsky and A. Mottet. 2016. Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, IEEE, New York, NY, USA, 623--632.
[14]
M. Bodirsky, A. Mottet, M. Olšák, J. Opršal, M. Pinsker, and R. Willard. 2019. Topology is relevant (in a dichotomy conjecture for infinite-domain constraint satisfaction problems). In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, Vancouver, BC, Canada, 1--12. Available at arXiv:1901.04237.
[15]
M. Bodirsky and M. Pinsker. 2011. Reducts of Ramsey structures. AMS Contemporary Mathematics 558 (2011), 489--519.
[16]
J.-Y. Cai, M. Fürer, and N. Immerman. 1992. An optimal lower bound on the number of variables for graph identification. Combinatorica 12, 4 (1992), 389--410.
[17]
A. K. Chandra and P. M. Merlin. 1977. Optimal implementation of conjunctive queries in relational databases. In Proceedings of the ninth annual ACM symposium on Theory of computing. ACM, New York, NY, United States, 77--90.
[18]
G. Cherlin, S. Shelah, and N. Shi. 1999. Universal graphs with forbidden subgraphs and algebraic closure. Advances in Applied Mathematics 22, 4 (1999), 454--491.
[19]
A. Dawar. 2015. The nature and power of fixed-point logic with counting. ACM SIGLOG News 2, 1 (2015), 8--21.
[20]
A. Dawar, M. Grohe, B. Holm, and B. Laubner. 2009. Logics with rank operators. In 2009 24th Annual IEEE Symposium on Logic In Computer Science. IEEE, Los Angeles, CA, USA, 113--122.
[21]
A. Dawar and S. Kreutzer. 2008. On Datalog vs. LFP. In International Colloquium on Automata, Languages and Programming. Springer, Reykjavik, Iceland, 160--171.
[22]
A. Dawar and P. Wang. 2017. Definability of semidefinite programming and Lasserre lower bounds for CSPs. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, Reykjavik, Iceland, 1--12.
[23]
T. Feder and M. Y. Vardi. 2003. Homomorphism closed vs. existential positive. In 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings. IEEE, Ottawa, Ont., Canada, 311--320.
[24]
P. Gillibert, J. Jonušas, M. Kompatscher, A. Mottet, and M. Pinsker. 2020. Hrushovski's encoding and ω-categorical CSP monsters. In International Colloquium on Automata, Languages and Programming. ACM, Saarbrücken, Germany, to appear. Available at arXiv:2002.07054.
[25]
A. Goerdt. 2009. On random ordering constraints. In International Computer Science Symposium in Russia. Springer, Novosibirsk, Russia, 105--116.
[26]
E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and S. Weinstein. 2007. Finite Model Theory and its applications. Springer, Berlin, Heidelberg, New York.
[27]
E. Grädel and M. Otto. 1993. Inductive Definability with Counting on Finite Structures. In Computer Science Logic, 6th Workshop, CSL '92, San Miniato 1992, Selected Papers, Vol. 702. Springer, San Miniato, Italy, 231--247.
[28]
E. Grädel and W. Pakusa. 2019. Rank logic is dead, long live rank logic! The Journal of Symbolic Logic 84, 1 (2019), 54--87.
[29]
M. Grohe. 2008. The quest for a logic capturing PTIME. In 2008 23rd Annual IEEE Symposium on Logic in Computer Science. IEEE, Pittsburgh, PA, USA, 267--271.
[30]
Y. Gurevich and S. Shelah. 1996. On finite rigid structures. The Journal of Symbolic Logic 61, 2 (1996), 549--562.
[31]
V. Guruswami, J. Håstad, R. Manokaran, P. Raghavendra, and M. Charikar. 2011. Beating the random ordering is hard: Every ordering CSP is approximation resistant. SIAM J. Comput. 40, 3 (2011), 878--914.
[32]
W. Hodges. 1997. A shorter model theory. Cambridge university press, Cambridge, United Kingdom.
[33]
J. Hubička and J. Nešetřil. 2016. Homomorphism and Embedding Universal Structures for Restricted Classes. Journal of Multiple-Valued Logic & Soft Computing 27 (2016), 229--253. Available at arXiv:0909.4939.
[34]
A. S. Kechris, V. G. Pestov, and S. Todorcevic. 2005. Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geometric and Functional Analysis 15, 1 (2005), 106--189.
[35]
M. Kozik, A. Krokhin, M. Valeriote, and R. Willard. 2015. Characterizations of several Maltsev conditions. Algebra universalis 73, 3-4 (2015), 205--224.
[36]
S. Kreutzer. 2004. Expressive equivalence of least and inflationary fixed-point logic. Annals of Pure and Applied Logic 130, 1-3 (2004), 61--78.
[37]
B. Larose and L. Zádori. 2007. Bounded width problems and algebras. Algebra universalis 56, 3-4 (2007), 439--466.
[38]
L. Libkin. 2013. Elements of finite model theory. Springer, Berlin, Heidelberg, New York.
[39]
M. Maróti and R. McKenzie. 2008. Existence theorems for weakly symmetric operations. Algebra universalis 59, 3 (2008), 463--489.
[40]
B. Nebel and H.-J. Bürckert. 1995. Reasoning about temporal relations: a maximal tractable subclass of Allen's interval algebra. Journal of the ACM (JACM) 42, 1 (1995), 43--66.
[41]
M. Olšák. 2018. Maltsev conditions for general congruence meet-semidistributive algebras. (2018). Available at arXiv:1810.03178.
[42]
M. Olšák. 2019. Generalizing CSP-related results to infinite algebras. PhD dissertation. Univerzita Karlova, Matematicko-fyzikální fakulta.
[43]
M. Otto. 2000. Bounded Variable Logics and Counting. A Study in Finite Model Theory. Springer, Berlin, Heidelberg, New York.
[44]
W. Pakusa. 2015. Linear Equation Systems and the Search for a Logical Characterisation of Polynomial Time. Ph.D. Dissertation. PhD thesis, RWTH Aachen.
[45]
P. Wang. 2018. Descriptive complexity of constraint problems. Ph.D. Dissertation. University of Cambridge.

Cited By

View all
  • (2022)Smooth approximations and CSPs over finitely bounded homogeneous structuresProceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/3531130.3533353(1-13)Online publication date: 2-Aug-2022
  • (2021)Solving equation systems in ω-categorical algebrasJournal of Mathematical Logic10.1142/S0219061321500203(2150020)Online publication date: 6-Jan-2021
  • (2020)ASNP: A Tame Fragment of Existential Second-Order LogicBeyond the Horizon of Computability10.1007/978-3-030-51466-2_13(149-162)Online publication date: 24-Jun-2020

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science
July 2020
986 pages
ISBN:9781450371049
DOI:10.1145/3373718
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Maltsev conditions
  2. fixed-point logic
  3. temporal constraint satisfaction problems

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

LICS '20
Sponsor:

Acceptance Rates

LICS '20 Paper Acceptance Rate 69 of 174 submissions, 40%;
Overall Acceptance Rate 215 of 622 submissions, 35%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)12
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Smooth approximations and CSPs over finitely bounded homogeneous structuresProceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science10.1145/3531130.3533353(1-13)Online publication date: 2-Aug-2022
  • (2021)Solving equation systems in ω-categorical algebrasJournal of Mathematical Logic10.1142/S0219061321500203(2150020)Online publication date: 6-Jan-2021
  • (2020)ASNP: A Tame Fragment of Existential Second-Order LogicBeyond the Horizon of Computability10.1007/978-3-030-51466-2_13(149-162)Online publication date: 24-Jun-2020

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media