Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3395260.3395284acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmaiConference Proceedingsconference-collections
research-article

Fully Convolutional Network based on Contrast Information Integration for Dermoscopic Image Segmentation

Published: 29 May 2020 Publication History

Abstract

Melanoma is one of the most common human lethal cancers. Because the lesions have different shapes, sizes, colors, and low contrast, extracting powerful features for fine-grained skin lesion segmentation is still a challenging task today. In this paper, we propose a novel fully convolutional network based on contrast information integration for skin lesion segmentation, which effectively utilizes contrast information from each convolutional block in our network framework. Compared with existing skin lesion segmentation approaches, a new integration module is designed by combining the contrast information for extracting richer feature representation. Finally, we evaluate our method on the public ISIC 2017 challenge dataset and obtain the outstanding performance with the Jaccard Index (JA) of 79.9%, which is higher than other state-of-the-art methods for skin lesion segmentation.

References

[1]
D. S. Rigel, R. J. Friedman, A.W. Kopf, O. J. Wisco, and A. J. Sober. 2012. Prognostic factors for melanoma. DERMATOL CLIN. vol. 30, no. 3. 469--485.
[2]
R. L. Siegel, K. D. Miller and A. Jemal. 2016. Cancer statistics. CA-CANCER J CLIN. vol. 66, no. 1. 7--30.
[3]
S. A. Leachman, P. B. Cassidy, S. C. Chen, et al. 2016. Methods of melanoma detection. Melanoma. 51--105.
[4]
M. Silveira, J. C. Nascimento, J. S. Marques, A. R. S. Marcal, T. Mendonca, S. Yamauchi, J. Meada, and J. Rozeira. 2009. Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE J-STSP. vol. 3, no. 1.35--45.
[5]
L. Yu, H. Chen, Q. Dou, J. Qin, and P.-A. Heng. 2016. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE T MED IMAGING. vol. 36, no. 4. 994--1004.
[6]
D. H. Chung and G. Sapiro. 2000. Segmenting skin lesions with partial-differential-equations-based image processing algorithms. IEEE T MED IMAGING. vol. 19, no. 7. 763--767.
[7]
X. Yuan, N. Situ, and G. Zouridakis. 2009. A narrow band graph partitioning method for skin lesion segmentation. PATTERN RECOGN. vol. 42, no. 6. 1017--1028.
[8]
A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca. 2019. Data augmentation using learned transformations for one-shot medical image segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR '19). Long Beach, CA, USA. 8543--8553.
[9]
Z. Gu, J. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao, T. Zhang, and S. Gao. 2019. CE-Net: context encoder network for 2D medical image segmentation. IEEE T MED IMAGING. vol 38, no. 10. 2281--2292.
[10]
O. Ronneberger, P. Fischer, and T. Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '15). Munich, Germany. 234--241.
[11]
J. Long, E. Shelhamer, and T. Darrell. 2015. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR '15). Boston, MA, USA. 3431--3440.
[12]
Y. Xue, T. Xu, and X. Huang. 2018. Adversarial learning with multi-scale loss for skin lesion segmentation. In IEEE 15th International Symposium on Biomedical Imaging (ISBI '18). Washington, DC, USA. 859--863.
[13]
S. Chen, Z. Wang, J. Shi, B. Liu, and N. Yu. 2018. A multitask framework with feature passing module for skin lesion classification and segmentation, In IEEE 15th International Symposium on Biomedical Imaging (ISBI '18). Washington, DC, USA. 1126--1129.
[14]
L. Bi, J. Kim, E. Ahn, A. Kumar, F. Dagan, and M. Fulham. 2019. Step-wise integration of deep class-specific learning for dermoscopic image segmentation. PATTERN RECOGN. vol. 85. 78--89.
[15]
M. M. K. Sarker, H. A. Rashwan, F. Akram, S. F. Banu, A. Saleh, V. K. Singh, F. U. H. Chowdhury, S. Abdulwahab, S. Romani, P. Radeva, and D. Puig. 2018. SLSDeep: Skin lesion segmentation based on dilated residual and pyramid pooling networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '18). Granada, Spain. 21--29.
[16]
N. C. F. Codella, D. Gutman, M. E. Celebi, B. Helba, M. A. Marchetti, S. W. Dusza, A. Kalloo, K. Liopyris, N. Mishra, H. Kittler, and A. Halpern. 2018. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic). In IEEE 15th International Symposium on Biomedical Imaging (ISBI '18). Washington, DC, USA. 168--172.
[17]
K. He, X. Zhang, S. Ren, and J. Sun. 2015. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR '16). Las Vegas, NV, USA. 770--778.
[18]
H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia. 2017. Pyramid Scene Parsing Network. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR '17). Honolulu, HI, USA. 2881--2890.
[19]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F.-F. Li. 2015. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vision 115, 3, 211--252.
[20]
L. C. Chen, G. Papandreou, F. Schroff, and H. Adam. 2017. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv: 1706.05587. Retrieved from https://arxiv.org/abs/1706.05587
[21]
C. M. Pun and P. Ng. 2014. Skin Segmentation Using GMM Classifier and Texture Feature Extraction. International Journal of Machine Learning and Computing. 4(1), 57--62.
[22]
S. Kollem, K. R. L. Reddy, and D. S. Rao. 2019. A Review of Image Denoising and Segmentation Methods Based on Medical Images. International Journal of Machine Learning and Computing. vol. 9, no. 3, 288--295.
[23]
Y. T. Chen. 2017. A Level Set Method Based on Bayesian Risk for Textured Image Segmentation. International Journal of Machine Learning and Computing. vol. 7, no. 4, 89--93.
[24]
D. C. Tseng and R. L. Chen. 2015. Mutiscale Texture Segmentation Using Contextual Hidden Markov Tree Models. International Journal of Machine Learning and Computing. vol. 5, no. 3, 198--205.
[25]
A. Javed, W. Y. Chai, A. R. Alenezi, and N. Kulathuramaiyer. 2014. Enhancement of Magnetic Resonance Images Using Soft Computing Based Segmentation. International Journal of Machine Learning and Computing. vol.4, no. 1, 73--78.
[26]
J. Vansteenberge, M. Mukunoki, and M. Minoh. 2013. Combined Object Detection and Segmentation. International Journal of Machine Learning and Computing. vol. 3, no. 1, 60--64.
[27]
R. Kharghanian and A. Ahmadyfard. 2012. Retinal Blood Vessel Segmentation Using Gabor Wavelet and Line Operator. International Journal of Machine Learning and Computing. vol.2, no. 5, 593--597.
[28]
T. Saikumar, P. Yugander, P.S. Murthy, and B. Smitha. 2012. Improved Fuzzy C-Means Clustering Algorithm Using Watershed Transform on Level Set Method for Image Segmentation. International Journal of Machine Learning and Computing. vol. 2, no. 1, 19--23, 2012.

Cited By

View all

Index Terms

  1. Fully Convolutional Network based on Contrast Information Integration for Dermoscopic Image Segmentation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ICMAI '20: Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence
    April 2020
    252 pages
    ISBN:9781450377072
    DOI:10.1145/3395260
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    • Southwest Jiaotong University
    • Xihua University: Xihua University

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2020

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Fully convolutional network
    2. segmentation
    3. skin lesion

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • Special Fund Project for Innovation of High-level Overseas Talents
    • Shenzhen Discipline Construction Project for Urban Computing and Data Intelligence
    • Major Special Project of Guangdong Province
    • Shenzhen Basic Research Projects
    • Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology
    • National Natural Science Foundation of China
    • Shenzhen Science and Technology Innovation Project

    Conference

    ICMAI 2020

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 82
      Total Downloads
    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media