Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A New Error-Modeling of Hardy’s Paradox for Superconducting Qubits and Its Experimental Verification

Published: 02 October 2020 Publication History

Abstract

Hardy’s paradox (equivalently, Hardy’s non-locality or Hardy’s test) [Phys. Rev. Lett. 68, 2981 (1992)] is used to show non-locality without inequalities, and it has been tested several times using optical circuits. We, for the first time, experimentally test Hardy’s paradox of non-locality in superconducting qubits. For practical verification of Hardy’s paradox, we argue that the error-modeling used in optical circuits is not useful for superconducting qubits. So, we propose a new error-modeling for Hardy’s paradox and a new method to estimate the lower bound on Hardy’s probability (i.e., the probability of a specific event in Hardy’s test) for superconducting qubits. Our results confirmed the theory that any non-maximally entangled state of two qubits violates Hardy’s equations; whereas, any maximally entangled state and product state of two qubits do not exhibit Hardy’s non-locality. Further, we point out the difficulties associated with the practical implementation of quantum protocols based on Hardy’s paradox and propose possible remedies. We also propose two performance measures for any two qubits of any quantum computer based on superconducting qubits.

References

[1]
Daniel Alsina and José Ignacio Latorre. 2016. Experimental test of Mermin inequalities on a five-qubit quantum computer. Physical Review A 94 (July 2016), 012314. Issue 1.
[2]
Mirko Amico, Zain H. Saleem, and Muir Kumph. 2019. Experimental study of Shor’s factoring algorithm using the IBM Q Experience. Physical Review A 100 (July 2019), 012305. Issue 1.
[3]
Markus Ansmann, H. Wang, Radoslaw C. Bialczak, Max Hofheinz, Erik Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, A. N. Cleland, and John M. Martinis. 2009. Violation of Bell’s inequality in Josephson phase qubits. Nature 461 (Sept. 24, 2009), 504. https://doi.org/10.1038/nature08363
[4]
Alain Aspect, Jean Dalibard, and Gérard Roger. 1982. Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters 49 (Dec. 1982), 1804--1807. Issue 25.
[5]
Stefanie J. Beale, Joel J. Wallman, Mauricio Gutiérrez, Kenneth R. Brown, and Raymond Laflamme. 2018. Quantum error correction decoheres noise. Physical Review Letters 121, 19 (Nov. 2018).
[6]
Bikash K. Behera, Anindita Banerjee, and Prasanta K. Panigrahi. 2017. Experimental realization of quantum cheque using a five-qubit quantum computer. Quantum Information Processing 16, 12 (Nov. 2017).
[7]
John S. Bell. 1964. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika 1 (Nov. 1964), 195--200. Issue 3.
[8]
Mario Berta, Stephanie Wehner, and Mark M. Wilde. 2016. Entropic uncertainty and measurement reversibility. New Journal of Physics 18, 7 (July 2016), 073004.
[9]
Daniel Braun and Mahn-Soo Choi. 2008. Hardy’s test versus the Clauser-Horne-Shimony-Holt test of quantum nonlocality: Fundamental and practical aspects. Physical Review A 78 (Sept. 2008), 032114. Issue 3.
[10]
Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie Wehner. 2014. Bell nonlocality. Reviews of Modern Physics 86 (Apr. 2014), 419--478. Issue 2.
[11]
José L. Cereceda. 2004. Hardy’s nonlocality for generalized n-particle GHZ states. Physics Letters A 327, 5 (2004), 433--437.
[12]
Lixiang Chen and Jacquiline Romero. 2012. Hardy’s nonlocality proof using twisted photons. Optics Express 20, 19 (Sept. 2012), 21687--21692.
[13]
Lixiang Chen, Wuhong Zhang, Ziwen Wu, Jikang Wang, Robert Fickler, and Ebrahim Karimi. 2017. Experimental ladder proof of Hardy’s nonlocality for high-dimensional quantum systems. Physical Review A 96 (Aug. 2017), 022115. Issue 2.
[14]
Brad G. Christensen, Kevin T. McCusker, Joseph B. Altepeter, Brice Calkins, Thomas Gerrits, Adriana E. Lita, Aaron Miller, Lynden K. Shalm, Yanbao Zhang, Sae Woo Nam, Nicolas Brunner, Charles C. W. Lim, Nicolas Gisin, and Paul G. Kwiat. 2013. Detection-loophole-free test of quantum nonlocality, and applications. Physical Review Letters 111 (Sept. 2013), 130406. Issue 13.
[15]
John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. 1969. Proposed experiment to test local hidden-variable theories. Physical Review Letters 23 (Oct. 1969), 880--884. Issue 15.
[16]
Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta. 2019. Validating quantum computers using randomized model circuits. Physical Review A 100, 3 (Sept. 2019).
[17]
Simon J. Devitt. 2016. Performing quantum computing experiments in the cloud. Physical Review A 94 (Sept. 2016), 032329. Issue 3.
[18]
Giovanni Di Giuseppe, Francesco De Martini, and D. Boschi. 1997. Experimental test of the violation of local realism in quantum mechanics without Bell inequalities. Physical Review A 56 (July 1997), 176--181. Issue 1.
[19]
Albert Einstein, Boris Podolsky, and Nathan Rosen. 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review 47 (May 1935), 777--780. Issue 10.
[20]
Dai-He Fan, Mao-Chun Dai, Wei-Jie Guo, and Lian-Fu Wei. 2017. Experimentally testing Hardy’s theorem on nonlocality with entangled mixed states. Chinese Physics B 26, 4 (Apr. 2017), 040302.
[21]
Alessandro Fedrizzi, Marcelo P. Almeida, Matthew A. Broome, Andrew G. White, and Marco Barbieri. 2011. Hardy’s paradox and violation of a state-independent bell inequality in time. Physical Review Letters 106 (May 2011), 200402. Issue 20.
[22]
William Feller. 1968. An Introduction to Probability Theory and Its Applications. Vol. 1. Wiley.
[23]
Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. 2017. Building logical qubits in a superconducting quantum computing system. NPJ Quantum Information 3, 1 (Jan. 2017).
[24]
Sayan Gangopadhyay, Manabputra, Bikash K. Behera, and Prasanta K. Panigrahi. 2018. Generalization and demonstration of an entanglement-based Deutsch--Jozsa-like algorithm using a 5-qubit quantum computer. Quantum Information Processing 17, 7 (May 2018).
[25]
Marco Genovese. 2005. Research on hidden variable theories: A review of recent progresses. Physics Reports 413, 6 (2005), 319--396.
[26]
GianCarlo Ghirardi and Luca Marinatto. 2006. Hardy’s proof of nonlocality in the presence of noise. Physical Review A 74 (Dec. 2006), 062107. Issue 6.
[27]
Marissa Giustina, Alexandra Mech, Sven Ramelow, Bernhard Wittmann, Johannes Kofler, Jörn Beyer, Adriana Lita, Brice Calkins, Thomas Gerrits, Sae Woo Nam, Rupert Ursin, and Anton Zeilinger. 2013. Bell violation using entangled photons without the fair-sampling assumption. Nature 497 (Apr. 14, 2013), 227--230. https://doi.org/10.1038/nature12012
[28]
Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan-Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger. 2015. Significant-loophole-free test of Bell’s theorem with entangled photons. Physical Review Letters 115 (Dec. 2015), 250401. Issue 25.
[29]
Sheldon Goldstein. 1994. Nonlocality without inequalities for almost all entangled states for two particles. Physical Review Letters 72 (Mar. 1994), 1951--1951. Issue 13.
[30]
Daniel M. Greenberger, Michael A. Horne, Abner Shimony, and Anton Zeilinger. 1990. Bell’s theorem without inequalities. American Journal of Physics 58, 12 (1990), 1131--1143.
[31]
Simon Gröblacher, Tomasz Paterek, Rainer Kaltenbaek, Caslav Brukner, Marek Zukowski, Markus Aspelmeyer, and Anton Zeilinger. 2007. An experimental test of non-local realism. Nature 446 (Apr. 19, 2007), 871--875. https://doi.org/10.1038/nature05677
[32]
H. Haffner, C. Roos, and R. Blatt. 2008. Quantum computing with trapped ions. Physics Reports 469, 4 (Dec. 2008), 155--203.
[33]
Johannes Handsteiner, Andrew S. Friedman, Dominik Rauch, Jason Gallicchio, Bo Liu, Hannes Hosp, Johannes Kofler, David Bricher, Matthias Fink, Calvin Leung, Anthony Mark, Hien T. Nguyen, Isabella Sanders, Fabian Steinlechner, Rupert Ursin, Sören Wengerowsky, Alan H. Guth, David I. Kaiser, Thomas Scheidl, and Anton Zeilinger. 2017. Cosmic Bell Test: Measurement settings from Milky Way stars. Physical Review Letters 118 (Feb. 2017), 060401. Issue 6.
[34]
Lucien Hardy. 1992. Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Physical Review Letters 68 (May 1992), 2981--2984. Issue 20.
[35]
Lucien Hardy. 1993. Nonlocality for two particles without inequalities for almost all entangled states. Physical Review Letters 71 (Sep. 1993), 1665--1668. Issue 11.
[36]
Robin Harper and Steven T. Flammia. 2019. Fault-Tolerant logical gates in the IBM quantum experience. Physical Review Letters 122 (Feb. 2019), 080504. Issue 8.
[37]
Martin Hebenstreit, Daniel Alsina, José I. Latorre, and Barbara Kraus. 2017. Compressed quantum computation using a remote five-qubit quantum computer. Physical Review A 95 (May 2017), 052339. Issue 5.
[38]
Bas Hensen, Hannes Bernien, Anais E. Dréau, Andreas Reiserer, Norbert Kalb, Machiel S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson. 2015. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526 (Oct. 21, 2015), 682--686. https://doi.org/10.1038/nature15759
[39]
Wei Hu. 2018. Empirical analysis of a quantum classifier implemented on IBM’s 5Q quantum computer. Journal of Quantum Information Science 08, 01 (2018), 1--11.
[40]
Emilie Huffman and Ari Mizel. 2017. Violation of noninvasive macrorealism by a superconducting qubit: Implementation of a Leggett-Garg test that addresses the clumsiness loophole. Physical Review A 95 (Mar 2017), 032131. Issue 3.
[41]
IBM. 2019. IBM quantum experience. Retrieved from https://www.research.ibm.com/ibm-q/.
[42]
William T. M. Irvine, Juan F. Hodelin, Christoph Simon, and Dirk Bouwmeester. 2005. Realization of Hardy’s thought experiment with photons. Physical Review Letters 95 (July 2005), 030401. Issue 3.
[43]
Ebrahim Karimi, Filippo Cardano, Maria Maffei, Corrado de Lisio, Lorenzo Marrucci, Robert W. Boyd, and Enrico Santamato. 2014. Hardy’s paradox tested in the spin-orbit Hilbert space of single photons. Physical Review A 89 (Mar. 2014), 032122. Issue 3.
[44]
Patrick Krantz, Morten Kjaergaard, Feng Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. 2019. A quantum engineer's guide to superconducting qubits. Applied Physics Reviews 6, 2 (June 2019), 021318.
[45]
Ben P. Lanyon, Michael Zwerger, Petar Jurcevic, C. Hempel, Wolfgang Dür, Hans J. Briegel, Rainer Blatt, and C. F. Roos. 2014. Experimental violation of multipartite bell inequalities with trapped ions. Physical Review Letters 112 (Mar. 2014), 100403. Issue 10.
[46]
Jan-Åke Larsson, Marissa Giustina, Johannes Kofler, Bernhard Wittmann, Rupert Ursin, and Sven Ramelow. 2014. Bell-inequality violation with entangled photons, free of the coincidence-time loophole. Physical Review A 90 (Sep. 2014), 032107. Issue 3.
[47]
Yonghae Lee, Jaewoo Joo, and Soojoon Lee. 2019. Hybrid quantum linear equation algorithm and its experimental test on IBM quantum experience. Scientific Reports 9, 1 (2019), 4778.
[48]
Hong-Wei Li, Marcin Pawłowski, Ramij Rahaman, Guang-Can Guo, and Zheng-Fu Han. 2015. Device- and semi--device-independent random numbers based on noninequality paradox. Physical Review A 92 (Aug. 2015), 022327. Issue 2.
[49]
Daniel Loss and David P. DiVincenzo. 1998. Quantum computation with quantum dots. Physical Review A 57, 1 (Jan. 1998), 120--126.
[50]
Dawei Lu, Aharon Brodutch, Jihyun Park, Hemant Katiyar, Tomas Jochym-O’Connor, and Raymond Laflamme. 2016. NMR quantum information processing. In Electron Spin Resonance (ESR) Based Quantum Computing. Springer, 193--226.
[51]
Jeff S. Lundeen and Aephraim M. Steinberg. 2009. Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Physical Review Letters 102 (Jan. 2009), 020404. Issue 2.
[52]
Yi-Han Luo, Hong-Yi Su, He-Liang Huang, Xi-Lin Wang, Tao Yang, Li Li, Nai-Le Liu, Jing-Ling Chen, Chao-Yang Lu, and Jian-Wei Pan. 2018. Experimental test of generalized Hardy’s paradox. Science Bulletin 63, 24 (2018), 1611--1615.
[53]
Alexander J. McCaskey, Zachary P. Parks, Jacek Jakowski, Shirley V. Moore, Titus D. Morris, Travis S. Humble, and Raphael C. Pooser. 2019. Quantum chemistry as a benchmark for near-term quantum computers. NPJ Quantum Information 5, 1 (Nov. 2019).
[54]
Nathaniel David Mermin. 1990. Extreme quantum entanglement in a superposition of macroscopically distinct states. Physical Review Letters 65 (Oct. 1990), 1838--1840. Issue 15.
[55]
Nathaniel David Mermin. 1995. The best version of Bell’s theorema. Annals of the New York Academy of Sciences 755, 1 (1995), 616--623.
[56]
Jian-Wei Pan, Dik Bouwmeester, Matthew Daniell, Harald Weinfurter, and Anton Zeilinger. 2000. Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 6769 (2000), 515--519.
[57]
Stefano Pironio, Antonio Acín, Nicolas Brunner, Nicolas Gisin, Serge Massar, and Valerio Scarani. 2009. Device-independent quantum key distribution secure against collective attacks. New Journal of Physics 11, 4 (Apr. 2009), 045021.
[58]
John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum 2 (Aug. 2018), 79.
[59]
Rafael Rabelo, Law Yun Zhi, and Valerio Scarani. 2012. Device-independent bounds for Hardy’s experiment. Physical Review Letters 109 (Oct. 2012), 180401. Issue 18.
[60]
Ramij Rahaman, Marcin Wieśniak, and Marek Żukowski. 2015. Quantum Byzantine agreement via Hardy correlations and entanglement swapping. Physical Review A 92 (Oct. 2015), 042302. Issue 4.
[61]
Salonik Resch and Ulya R. Karpuzcu. 2019. Benchmarking Quantum Computers and the Impact of Quantum Noise. arXiv:arXiv:1912.00546
[62]
Wenjamin Rosenfeld, Daniel Burchardt, Robert Garthoff, Kai Redeker, Norbert Ortegel, Markus Rau, and Harald Weinfurter. 2017. Event-ready bell test using entangled atoms simultaneously closing detection and locality loopholes. Physical Review Letters 119 (July 2017), 010402. Issue 1.
[63]
Deniel Salart, Augustin Baas, J. A. W. van Houwelingen, Nicolas Gisin, and Hugo Zbinden. 2008. Spacelike separation in a Bell test assuming gravitationally induced collapses. Physical Review Letters 100 (June 2008), 220404. Issue 22.
[64]
Lynden K. Shalm, Evan Meyer-Scott, Bradley G. Christensen, Peter Bierhorst, Michael A. Wayne, Martin J. Stevens, Thomas Gerrits, Scott Glancy, Deny R. Hamel, Michael S. Allman, Kevin J. Coakley, Shellee D. Dyer, Carson Hodge, Adriana E. Lita, Varun B. Verma, Camilla Lambrocco, Edward Tortorici, Alan L. Migdall, Yanbao Zhang, Daniel R. Kumor, William H. Farr, Francesco Marsili, Matthew D. Shaw, Jeffrey A. Stern, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Thomas Jennewein, Morgan W. Mitchell, Paul G. Kwiat, Joshua C. Bienfang, Richard P. Mirin, Emanuel Knill, and Sae Woo Nam. 2015. Strong loophole-free test of local realism. Physical Review Letters 115 (Dec. 2015), 250402. Issue 25.
[65]
Claude E. Shannon. 1948. A mathematical theory of communication. Bell System Technical Journal 27, 3 (1948), 379--423.
[66]
Maika Takita, Andrew W. Cross, A. D. Córcoles, Jerry M. Chow, and Jay M. Gambetta. 2017. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Physical Review Letters 119 (Oct. 2017), 180501. Issue 18.
[67]
Philipp Treutlein, Tilo Steinmetz, Yves Colombe, Benjamin Lev, Peter Hommelhoff, Jakob Reichel, Markus Greiner, Olaf Mandel, Arthur Widera, Tim Rom, Immanuel Bloch, and Theodor W. Hänsch. 2006. Quantum information processing in optical lattices and magnetic microtraps. Fortschritte der Physik 54, 8–10 (Aug. 2006), 702--718.
[68]
Giuseppe Vallone, Ilaria Gianani, Enrique B. Inostroza, Carlos Saavedra, Gustavo Lima, Adán Cabello, and Paolo Mataloni. 2011. Testing Hardy’s nonlocality proof with genuine energy-time entanglement. Physical Review A 83 (Apr. 2011), 042105. Issue 4.
[69]
Joel Wallman, Chris Granade, Robin Harper, and Steven T. Flammia. 2015. Estimating the coherence of noise. New Journal of Physics 17, 11 (Nov. 2015), 113020.
[70]
Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger. 1998. Violation of Bell’s inequality under strict Einstein locality conditions. Physical Review Letters 81 (Dec. 1998), 5039--5043. Issue 23.
[71]
İskender Yalçınkaya and Zafer Gedik. 2017. Optimization and experimental realization of the quantum permutation algorithm. Physical Review A 96 (Dec. 2017), 062339. Issue 6.
[72]
Mu Yang, Hui-Xian Meng, Jie Zhou, Zhen-Peng Xu, Ya Xiao, Kai Sun, Jing-Ling Chen, Jin-Shi Xu, Chuan-Feng Li, and Guang-Can Guo. 2019. Stronger Hardy-type paradox based on the Bell inequality and its experimental test. Physical Review A 99 (Mar. 2019), 032103. Issue 3.
[73]
Kazuhiro Yokota, Takashi Yamamoto, Masato Koashi, and Nobuyuki Imoto. 2009. Direct observation of Hardy's paradox by joint weak measurement with an entangled photon pair. New Journal of Physics 11, 3 (Mar. 2009), 033011.
[74]
Xiong Zhang, Yifan Sun, Xinbing Song, and Xiangdong Zhang. 2016. Realization of Hardy’s thought experiment using classical light. Journal of Optics 18, 9 (Aug. 2016), 095604.
[75]
Zhi Zhao, Tao Yang, Yu-Ao Chen, An-Ning Zhang, Marek Żukowski, and Jian-Wei Pan. 2003. Experimental violation of local realism by four-photon Greenberger-Horne-Zeilinger entanglement. Physical Review Letters 91 (Oct. 2003), 180401. Issue 18.

Cited By

View all

Index Terms

  1. A New Error-Modeling of Hardy’s Paradox for Superconducting Qubits and Its Experimental Verification

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Quantum Computing
    ACM Transactions on Quantum Computing  Volume 1, Issue 1
    December 2020
    139 pages
    EISSN:2643-6817
    DOI:10.1145/3427922
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 02 October 2020
    Online AM: 06 May 2020
    Accepted: 01 April 2020
    Revised: 01 April 2020
    Received: 01 November 2019
    Published in TQC Volume 1, Issue 1

    Author Tags

    1. Hardy’s paradox
    2. IBM quantum computer
    3. error-modeling
    4. non-locality
    5. quantum correlations
    6. superconducting qubits

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Loophole-Free Test of Local Realism via Hardy’s ViolationPhysical Review Letters10.1103/PhysRevLett.133.060201133:6Online publication date: 7-Aug-2024
    • (2024)Paradox with phase-coupled interferometersPhysical Review A10.1103/PhysRevA.110.042214110:4Online publication date: 21-Oct-2024
    • (2024)Efficiency of the non-maximally entangled quantum Otto enginePhysica Scripta10.1088/1402-4896/ad2cd199:4(045302)Online publication date: 7-Mar-2024
    • (2023)Increased success probability in Hardy's nonlocality: Theory and demonstrationPhysical Review A10.1103/PhysRevA.107.042210107:4Online publication date: 14-Apr-2023

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media