Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3397166.3409133acmconferencesArticle/Chapter ViewAbstractPublication PagesmobihocConference Proceedingsconference-collections
research-article
Public Access

Sl-edge: network slicing at the edge

Published: 11 October 2020 Publication History

Abstract

Network slicing of multi-access edge computing (MEC) resources is expected to be a pivotal technology to the success of 5G networks and beyond. The key challenge that sets MEC slicing apart from traditional resource allocation problems is that edge nodes depend on tightly-intertwined and strictly-constrained networking, computation and storage resources. Therefore, instantiating MEC slices without incurring in resource over-provisioning is hardly addressable with existing slicing algorithms. The main innovation of this paper is Sl-EDGE, a unified MEC slicing framework that allows network operators to instantiate heterogeneous slice services (e.g., video streaming, caching, 5G network access) on edge devices. We first describe the architecture and operations of Sl-EDGE, and then show that the problem of optimally instantiating joint network-MEC slices is NP-hard. Thus, we propose near-optimal algorithms that leverage key similarities among edge nodes and resource virtualization to instantiate heterogeneous slices 7.5x faster and within 25% of the optimum. We first assess the performance of our algorithms through extensive numerical analysis, and show that Sl-EDGE instantiates slices 6x more efficiently then state-of-the-art MEC slicing algorithms. Furthermore, experimental results on a 24-radio testbed with 9 smartphones demonstrate that Sl-EDGE provides simultaneously highly-efficient slicing of joint LTE connectivity, video streaming over WiFi, and ffmpeg video transcoding.

References

[1]
I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck. 2018. Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys & Tutorials 20, 3 (Mar. 2018), 2429--2453.
[2]
S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De. 2018. Joint VNF placement and CPU allocation in 5G. In Proc. of IEEE INFOCOM. Honolulu, HI, USA.
[3]
A. Al-Shuwaili and O. Simeone. 2017. Energy-efficient resource allocation for mobile edge computing-based augmented reality applications. IEEE Wireless Communications Letters 6, 3 (June 2017), 398--401.
[4]
L. Bertizzolo, L. Bonati, E. Demirors, and T. Melodia. 2019. Arena: A 64-antenna SDR-based Ceiling Grid Testbed for Sub-6 GHz Radio Spectrum Research. In Proc. of ACM WiNTECH. Los Cabos, Mexico.
[5]
N. Bizanis and F. A. Kuipers. 2016. SDN and virtualization solutions for the Internet of Things: A survey. IEEE Access 4 (2016), 5591--5606.
[6]
B. Bloessl, M. Segata, C. Sommer, and F. Dressler. 2018. Performance Assessment of IEEE 802.11p with an Open Source SDR-based Prototype. IEEE Trans. on Mobile Computing 17, 5 (May 2018), 1162--1175.
[7]
L. Bonati, S. D'Oro, L. Bertizzolo, E. Demirors, Z. Guan, S. Basagni, and T. Melodia. 2020. CellOS: Zero-touch Softwarized Open Cellular Networks. Computer Networks (COMNET) 180 (October 2020).
[8]
M. Bouet and V. Conan. 2018. Mobile edge computing resources optimization: A geo-clustering approach. IEEE Trans. on Network and Service Management 15, 2 (June 2018), 787--796.
[9]
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Now Foundations and Trends.
[10]
P. Caballero, A. Banchs, G. de Veciana, and X. Costa-Pérez. 2017. Network slicing games: Enabling customization in multi-tenant networks. In Proc. of IEEE INFOCOM. Atlanta, GA, USA.
[11]
G. Castellano, F. Esposito, and F. Risso. 2019. A Distributed Orchestration Algorithm for Edge Computing Resources with Guarantees. In Proc. of IEEE INFOCOM. Paris, France.
[12]
DASH Industry Forum. 2019. dash.js. https://tinyurl.com/ojd2bba.
[13]
S. D'Oro, F. Restuccia, and T. Melodia. 2020. Toward Operator-to-Waveform 5G Radio Access Network Slicing. IEEE Communications Magazine 58, 4 (April 2020), 18--23.
[14]
S. D'Oro, F. Restuccia, T. Melodia, and S. Palazzo. 2018. Low-complexity distributed radio access network slicing: Algorithms and experimental results. IEEE/ACM Trans. on Networking 26, 6 (Dec. 2018), 2815--2828.
[15]
S. D'Oro, F. Restuccia, A. Talamonti, and T. Melodia. 2019. The Slice Is Served: Enforcing Radio Access Network Slicing in Virtualized 5G Systems. In Proc. of IEEE INFOCOM 2019. Paris, France.
[16]
M. Elf, C. Gutwenger, M. Jünger, and G. Rinaldi. 2001. Branch-and-Cut Algorithms for Combinatorial Optimization and Their Implementation in ABACUS. Springer Berlin Heidelberg, 157--222.
[17]
M. Erol-Kantarci and S. Sukhmani. 2018. Caching and computing at the edge for mobile augmented reality and virtual reality (AR/VR) in 5G. In Ad Hoc Networks. Springer, 169--177.
[18]
ETSI. 2018. 5G End to End Key Performance Indicators (KPI). https://tinyurl.com/ETSIStandard.
[19]
ETSI. 2018. MEC in 5G networks. https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_in_5G_FINAL.pdf.
[20]
ETSI. 2019. MEC Deployments in 4G and Evolution Towards 5G. https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp24_MEC_deployment_in_4G_5G_FINAL.pdf.
[21]
ETSI. 2019. MEC support for network slicing. https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=53580.
[22]
FFmpeg Developers. 2019. ffmpeg tool. http://ffmpeg.org/.
[23]
X. Foukas, M. K. Marina, and K. Kontovasilis. 2017. Orion: RAN slicing for a flexible and cost-effective multi-service mobile network architecture. In Proc. of ACM MobiCom. Snowbird, Utah, USA.
[24]
G. Garcia-Aviles, M. Gramaglia, P. Serrano, and A. Banchs. 2018. POSENS: a practical open source solution for end-to-end network slicing. IEEE Wireless Communications 25, 5 (Oct. 2018), 30--37.
[25]
I. Gomez-Miguelez, A. Garcia-Saavedra, P.D. Sutton, P. Serrano, C. Cano, and D. J. Leith. 2016. srsLTE: An Open-source Platform for LTE Evolution and Experimentation. In Proc. of ACM WiNTECH. New York City, NY, USA.
[26]
A. Gudipati, D. Perry, L. E. Li, and S. Katti. 2013. SoftRAN: Software defined radio access network. In Proc. of ACM HotSDN. Hong Kong, China.
[27]
H. Halabian. 2019. Distributed resource allocation optimization in 5G virtualized networks. IEEE JSAC 37, 3 (Mar. 2019), 627--642.
[28]
B. Han, V. Sciancalepore, D. Feng, X. Costa-Perez, and H. D. Schotten. 2019. A Utility-Driven Multi-Queue Admission Control Solution for Network Slicing. In Proc. of IEEE INFOCOM. Paris, France.
[29]
S. He, J. Ren, J. Wang, Y. Huang, Y. Zhang, W. Zhuang, and S. Shen. 2019. Cloud-Edge Coordinated Processing: Low-Latency Multicasting Transmission. IEEE JSAC 37, 5 (May 2019), 1144--1158.
[30]
D. T. Hoang, D. Niyato, D. N. Nguyen, E. Dutkiewicz, P. Wang, and Z. Han. 2018. A Dynamic Edge Caching Framework for Mobile 5G Networks. IEEE Wireless Communications 25, 5 (Oct. 2018), 95--103.
[31]
H. Holma and A. Toskala. 2009. LTE for UMTS: OFDMA and SC-FDMA Based Radio Access. Wiley.
[32]
A. Huang. 2008. Similarity measures for text document clustering. In Proc. of the NZCSRSC. Christchurch, New Zealand.
[33]
M. Jiang, M. Condoluci, and T. Mahmoodi. 2017. Network slicing in 5G: An auction-based model. In Proc. of IEEE ICC. Paris, France.
[34]
A. Kaloxylos. 2018. A survey and an analysis of network slicing in 5G networks. IEEE Communications Standards Magazine 2, 1 (Mar. 2018), 60--65.
[35]
M.-H. Lin, J. G. Carlsson, D. Ge, J. Shi, and J.-F. Tsai. 2013. A review of piecewise linearization methods. Hindawi Mathematical Problems in Engineering (2013).
[36]
J. Liu, Y. Mao, J. Zhang, and K. B. Letaief. 2016. Delay-optimal computation task scheduling for mobile-edge computing systems. In Proc. of IEEE ISIT. Barcelona, Spain.
[37]
Q. Liu and T. Han. 2019. DIRECT: Distributed Cross-Domain Resource Orchestration in Cellular Edge Computing. In Proc. of ACM MobiHoc. Catania, Italy.
[38]
P. Mach and Z. Becvar. 2017. Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials 19, 3 (Mar. 2017), 1628--1656.
[39]
V. Mancuso, P. Castagno, M. Sereno, and M. A. Marsan. 2019. Slicing Cell Resources: The Case of HTC and MTC Coexistence. In Proc. of IEEE INFOCOM 2019. Paris, France.
[40]
S. Mandelli, M. Andrews, S. Borst, and S. Klein. 2019. Satisfying Network Slicing Constraints via 5G MAC Scheduling. In Proc. of IEEE INFOCOM 2019. Paris, France.
[41]
Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. 2017. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials 19, 4 (Aug. 2017), 2322--2358.
[42]
S. Misra and N. Saha. 2019. Detour: Dynamic Task Offloading in Software-Defined Fog for IoT Applications. IEEE JSAC 37, 5 (May 2019), 1159--1166.
[43]
S. Miyazaki, N. Morimoto, and Y. Okabe. 2015. Approximability of Two Variants of Multiple Knapsack Problems. In Proc. of Springer Intl. Conference on Algorithms and Complexity. Cham, Switzerland.
[44]
A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and C. S. Hong. 2020. Joint Communication, Computation, Caching, and Control in Big Data Multi-Access Edge Computing. IEEE Transactions on Mobile Computing 19, 6 (June 2020), 1359--1374.
[45]
P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and H. Bakker. 2017. Network slicing to enable scalability and flexibility in 5G mobile networks. IEEE Communications Magazine 55, 5 (May 2017), 72--79.
[46]
W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. 2014. On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Trans. on Signal Processing 62, 7 (Apr. 2014), 1750--1761.
[47]
T. Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP: Standards and Design Principles. In Proc. of ACM MMSys. San Jose, CA, USA.
[48]
Y. Sun, M. Peng, S. Mao, and S. Yan. 2019. Hierarchical radio resource allocation for network slicing in fog radio access networks. IEEE Trans. on Vehicular Technology 68, 4 (Apr. 2019), 3866--3881.
[49]
T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella. 2017. On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials 19, 3 (May 2017), 1657--1681.
[50]
L. Tang and S. He. 2018. Multi-user computation offloading in mobile edge computing: A behavioral perspective. IEEE Network 32, 1 (Jan. 2018), 48--53.
[51]
T. X. Tran and D. Pompili. 2018. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Trans. on Vehicular Technology 68, 1 (Jan. 2018), 856--868.
[52]
N. Van Huynh, D. Thai Hoang, D. N. Nguyen, and E. Dutkiewicz. 2019. Optimal and Fast Real-Time Resource Slicing With Deep Dueling Neural Networks. IEEE JSAC 37, 6 (June 2019), 1455--1470.
[53]
J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas. 2019. Computation Offloading in Multi-Access Edge Computing Using a Deep Sequential Model Based on Reinforcement Learning. IEEE Communications Magazine 57, 5 (May 2019), 64--69.
[54]
R. Xu and D. C. Wunsch. 2005. Survey of clustering algorithms. IEEE Trans. on Neural Networks 16, 3 (May 2005), 645--678.
[55]
S.-R. Yang, Y.-J. Tseng, C.-C. Huang, and W.-C. Lin. 2018. Multi-Access Edge Computing Enhanced Video Streaming: Proof-of-Concept Implementation and Prediction/QoE Models. IEEE Trans. on Vehicular Technology 68, 2 (Feb. 2018), 1888--1902.
[56]
K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang. 2018. Cooperative content caching in 5G networks with mobile edge computing. IEEE Wireless Communications 25, 3 (June 2018), 80--87.
[57]
Q. Zhang, F. Liu, and C. Zeng. 2019. Adaptive interference-aware VNF placement for service-customized 5G network slices. In Proc. of IEEE INFOCOM 2019. Paris, France.

Cited By

View all
  • (2024)FeDistSlice: Federated Policy Distillation for Collaborative Intelligence in Multi-Tenant RAN SlicingIEEE Transactions on Services Computing10.1109/TSC.2024.3517334(1-14)Online publication date: 2024
  • (2024)OrchestRAN: Orchestrating Network Intelligence in the Open RANIEEE Transactions on Mobile Computing10.1109/TMC.2023.334271123:7(7952-7968)Online publication date: Jul-2024
  • (2024)SEM-O-RAN: Semantic O-RAN Slicing for Mobile Edge Offloading of Computer Vision TasksIEEE Transactions on Mobile Computing10.1109/TMC.2023.333905623:7(7785-7800)Online publication date: Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
Mobihoc '20: Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing
October 2020
384 pages
ISBN:9781450380157
DOI:10.1145/3397166
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 October 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 5G
  2. multi-access edge computing (MEC)
  3. network slicing
  4. radio access network (RAN)

Qualifiers

  • Research-article

Funding Sources

Conference

Mobihoc '20
Sponsor:

Acceptance Rates

Overall Acceptance Rate 296 of 1,843 submissions, 16%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)281
  • Downloads (Last 6 weeks)18
Reflects downloads up to 23 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)FeDistSlice: Federated Policy Distillation for Collaborative Intelligence in Multi-Tenant RAN SlicingIEEE Transactions on Services Computing10.1109/TSC.2024.3517334(1-14)Online publication date: 2024
  • (2024)OrchestRAN: Orchestrating Network Intelligence in the Open RANIEEE Transactions on Mobile Computing10.1109/TMC.2023.334271123:7(7952-7968)Online publication date: Jul-2024
  • (2024)SEM-O-RAN: Semantic O-RAN Slicing for Mobile Edge Offloading of Computer Vision TasksIEEE Transactions on Mobile Computing10.1109/TMC.2023.333905623:7(7785-7800)Online publication date: Jul-2024
  • (2024)NeutRAN: An Open RAN Neutral Host Architecture for Zero-Touch RAN and Spectrum SharingIEEE Transactions on Mobile Computing10.1109/TMC.2023.3311728(1-14)Online publication date: 2024
  • (2024)Efficient Dynamic Distributed Resource Slicing in 6G Multi-Access Edge Computing Networks With Online ADMM and Message Passing Graph Neural NetworksIEEE Transactions on Mobile Computing10.1109/TMC.2023.326251423:4(2614-2638)Online publication date: Apr-2024
  • (2024)An AI-Enhanced Multipath TCP Scheduler for Open Radio Access NetworksIEEE Transactions on Green Communications and Networking10.1109/TGCN.2024.34242028:3(910-923)Online publication date: Sep-2024
  • (2024)DRL-Based Energy-Efficient Baseband Function Deployments for Service-Oriented Open RANIEEE Transactions on Green Communications and Networking10.1109/TGCN.2023.33211958:1(224-237)Online publication date: Mar-2024
  • (2024)A Bayesian Framework of Deep Reinforcement Learning for Joint O-RAN/MEC OrchestrationIEEE Open Journal of the Communications Society10.1109/OJCOMS.2024.3509777(1-1)Online publication date: 2024
  • (2024)Poster: Transport-Aware Resource Block Allocation in 5G Slicing2024 IEEE 10th International Conference on Network Softwarization (NetSoft)10.1109/NetSoft60951.2024.10588902(322-323)Online publication date: 24-Jun-2024
  • (2024)Ultrareliable Low-Latency Slicing in Space–Air–Ground Multiaccess Edge Computing Networks for Next-Generation Internet of Things and Mobile ApplicationsIEEE Internet of Things Journal10.1109/JIOT.2023.329878911:3(3956-3978)Online publication date: 1-Feb-2024
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media