Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3404835.3463245acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
short-paper

Elliot: A Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Published: 11 July 2021 Publication History

Abstract

Recommender Systems have shown to be an effective way to alleviate the over-choice problem and provide accurate and tailored recommendations. However, the impressive number of proposed recommendation algorithms, splitting strategies, evaluation protocols, metrics, and tasks, has made rigorous experimental evaluation particularly challenging. Puzzled and frustrated by the continuous recreation of appropriate evaluation benchmarks, experimental pipelines, hyperparameter optimization, and evaluation procedures, we have developed an exhaustive framework to address such needs. Elliot is a comprehensive recommendation framework that aims to run and reproduce an entire experimental pipeline by processing a simple configuration file. The framework loads, filters, and splits the data considering a vast set of strategies (13 splitting methods and 8 filtering approaches, from temporal training-test splitting to nested K-folds Cross-Validation). Elliot(https://github.com/sisinflab/elliot) optimizes hyperparameters (51 strategies) for several recommendation algorithms (50), selects the best models, compares them with the baselines providing intra-model statistics, computes metrics (36) spanning from accuracy to beyond-accuracy, bias, and fairness, and conducts statistical analysis (Wilcoxon and Paired t-test).

Supplementary Material

MP4 File (SIGIR21-rsp1403.mp4)
Presentation video.

References

[1]
Himan Abdollahpouri. 2019. Popularity Bias in Ranking and Recommendation. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES 2019, Honolulu, HI, USA, January 27--28, 2019, Vincent Conitzer, Gillian K. Hadfield, and Shannon Vallor (Eds.). ACM, 529--530.
[2]
Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling Popularity Bias in Learning-to-Rank Recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems, RecSys 2017, Como, Italy, August 27--31, 2017, Paolo Cremonesi, Francesco Ricci, Shlomo Berkovsky, and Alexander Tuzhilin (Eds.). ACM, 42--46.
[3]
Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2019. Managing Popularity Bias in Recommender Systems with Personalized Re-Ranking. In Proceedings of the Thirty-Second International Florida Artificial Intelligence Research Society Conference, Sarasota, Florida, USA, May 19--22 2019, Roman Barták and Keith W. Brawner (Eds.). AAAI Press, 413--418.
[4]
Vito Walter Anelli, Amra Delic, Gabriele Sottocornola, Jessie Smith, Nazareno Andrade, Luca Belli, Michael M. Bronstein, Akshay Gupta, Sofia Ira Ktena, Alexandre Lung-Yut-Fong, Frank Portman, Alykhan Tejani, Yuanpu Xie, Xiao Zhu, and Wenzhe Shi. 2020. RecSys 2020 Challenge Workshop: Engagement Prediction on Twitter's Home Timeline. In RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22--26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 623--627.
[5]
V. W. Anelli, T. Di Noia, E. Di Sciascio, A. Ragone, and J. Trotta. 2020. Semantic Interpretation of Top-N Recommendations. IEEE Transactions on Knowledge and Data Engineering (2020), 1--1.
[6]
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Claudio Pomo, and Azzurra Ragone. 2019 a. On the discriminative power of hyper-parameters in cross-validation and how to choose them. In Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September 16--20, 2019, Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk (Eds.). ACM, 447--451.
[7]
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone, and Joseph Trotta. 2019 b. How to Make Latent Factors Interpretable by Feeding Factorization Machines with Knowledge Graphs. In The Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland, New Zealand, October 26--30, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11778), Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svá tek, Isabel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrancc ois, and Fabien Gandon (Eds.). Springer, 38--56.
[8]
Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzurra Ragone, and Joseph Trotta. 2019 c. Local Popularity and Time in top-N Recommendation. In Advances in Information Retrieval - 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14--18, 2019, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11437), Leif Azzopardi, Benno Stein, Norbert Fuhr, Philipp Mayr, Claudia Hauff, and Djoerd Hiemstra (Eds.). Springer, 861--868.
[9]
Ricardo Baeza-Yates. 2020. Bias in Search and Recommender Systems. In RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22--26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 2.
[10]
Alejandro Bellog'i n, Pablo Castells, and Iván Cantador. 2011. Precision-oriented evaluation of recommender systems: an algorithmic comparison. In Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23--27, 2011, Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, and Gediminas Adomavicius (Eds.). ACM, 333--336.
[11]
Alejandro Bellog'i n and Alan Said. 2021. Improving Accountability in Recommender Systems Research Through Reproducibility. CoRR, Vol. abs/2102.00482 (2021).
[12]
Alejandro Bellog'i n and Pablo Sá nchez. 2017. Revisiting Neighbourhood-Based Recommenders For Temporal Scenarios. In Proceedings of the 1st Workshop on Temporal Reasoning in Recommender Systems co-located with 11th International Conference on Recommender Systems (RecSys 2017), Como, Italy, August 27--31, 2017 (CEUR Workshop Proceedings, Vol. 1922), Má ria Bieliková, Veronika Bogina, Tsvi Kuflik, and Roy Sasson (Eds.). CEUR-WS.org, 40--44.
[13]
James Bennett and Stan Lanning. 2007. The netflix prize. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, August 12--15, 2007. ACM .
[14]
James Bergstra, Ré mi Bardenet, Yoshua Bengio, and Balá zs Ké gl. 2011. Algorithms for Hyper-Parameter Optimization. In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12--14 December 2011, Granada, Spain, John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger (Eds.). 2546--2554.
[15]
James Bergstra, Daniel Yamins, and David D. Cox. 2013. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16--21 June 2013 (JMLR Workshop and Conference Proceedings, Vol. 28). JMLR.org, 115--123.
[16]
Pedro G. Campos, Fernando D'i ez, and Ivá n Cantador. 2014. Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model. User Adapt. Interact., Vol. 24, 1--2 (2014), 67--119.
[17]
Pablo Castells, Neil J. Hurley, and Saul Vargas. 2015. Novelty and Diversity in Recommender Systems. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). Springer, 881--918.
[18]
Dong-Kyu Chae, Jin-Soo Kang, Sang-Wook Kim, and Jung-Tae Lee. 2018. CFGAN: A Generic Collaborative Filtering Framework based on Generative Adversarial Networks. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, October 22--26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selcc uk Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM, 137--146.
[19]
Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua. 2017. Attentive Collaborative Filtering: Multimedia Recommendation with Item- and Component-Level Attention. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7--11, 2017, Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.). ACM, 335--344.
[20]
Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2016, Boston, MA, USA, September 15, 2016, Alexandros Karatzoglou, Balá zs Hidasi, Domonkos Tikk, Oren Sar Shalom, Haggai Roitman, Bracha Shapira, and Lior Rokach (Eds.). ACM, 7--10.
[21]
Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26--30, 2010, Xavier Amatriain, Marc Torrens, Paul Resnick, and Markus Zanker (Eds.). ACM, 39--46.
[22]
Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are we really making much progress? A worrying analysis of recent neural recommendation approaches. In Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September 16--20, 2019, Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk (Eds.). ACM, 101--109.
[23]
Yashar Deldjoo, Vito Walter Anelli, Hamed Zamani, Alejandro Bellogin, and Tommaso Di Noia. 2020. A flexible framework for evaluating user and item fairness in recommender systems. User Modeling and User-Adapted Interaction (2020), 1--47.
[24]
Michael D. Ekstrand. 2020. LensKit for Python: Next-Generation Software for Recommender Systems Experiments. In CIKM '20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19--23, 2020, Mathieu d'Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe Cudré -Mauroux (Eds.). ACM, 2999--3006.
[25]
Michael D. Ekstrand, Robin Burke, and Fernando Diaz. 2019 a. Fairness and discrimination in recommendation and retrieval. In Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September 16--20, 2019, Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk (Eds.). ACM, 576--577.
[26]
Michael D. Ekstrand, Robin Burke, and Fernando Diaz. 2019 b. Fairness and Discrimination in Retrieval and Recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21--25, 2019, Benjamin Piwowarski, Max Chevalier, É ric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (Eds.). ACM, 1403--1404.
[27]
Michael D. Ekstrand, Michael Ludwig, Joseph A. Konstan, and John Riedl. 2011. Rethinking the recommender research ecosystem: reproducibility, openness, and LensKit. In Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23--27, 2011, Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, and Gediminas Adomavicius (Eds.). ACM, 133--140.
[28]
Ben Frederickson. 2018. Fast python collaborative filtering for implicit datasets.
[29]
Simon Funk. 2006. Netflix update: Try this at home.
[30]
Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2012. Personalized Ranking for Non-Uniformly Sampled Items. In Proceedings of KDD Cup 2011 competition, San Diego, CA, USA, 2011 (JMLR Proceedings, Vol. 18), Gideon Dror, Yehuda Koren, and Markus Weimer (Eds.). JMLR.org, 231--247.
[31]
Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2011. MyMediaLite: a free recommender system library. In Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23--27, 2011, Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, and Gediminas Adomavicius (Eds.). ACM, 305--308.
[32]
Asela Gunawardana and Guy Shani. 2015. Evaluating Recommender Systems. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). Springer, 265--308.
[33]
Guibing Guo, Jie Zhang, Zhu Sun, and Neil Yorke-Smith. 2015. LibRec: A Java Library for Recommender Systems. In Posters, Demos, Late-breaking Results and Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP 2015), Dublin, Ireland, June 29 - July 3, 2015 (CEUR Workshop Proceedings, Vol. 1388), Alexandra I. Cristea, Judith Masthoff, Alan Said, and Nava Tintarev (Eds.). CEUR-WS.org.
[34]
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19--25, 2017, Carles Sierra (Ed.). ijcai.org, 1725--1731.
[35]
Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S. Lee, David Brooks, and Carole-Jean Wu. 2020. DeepRecSys: A System for Optimizing End-To-End At-Scale Neural Recommendation Inference. In 47th ACM/IEEE Annual International Symposium on Computer Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020. IEEE, 982--995.
[36]
Ruining He and Julian J. McAuley. 2016. VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12--17, 2016, Phoenix, Arizona, USA, Dale Schuurmans and Michael P. Wellman (Eds.). AAAI Press, 144--150.
[37]
Xiangnan He and Tat-Seng Chua. 2017. Neural Factorization Machines for Sparse Predictive Analytics. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7--11, 2017, Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.). ACM, 355--364.
[38]
Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yong-Dong Zhang, and Meng Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25--30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 639--648.
[39]
Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng Chua. 2018a. Outer Product-based Neural Collaborative Filtering. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13--19, 2018, Stockholm, Sweden, Jé rô me Lang (Ed.). ijcai.org, 2227--2233.
[40]
Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018b. Adversarial Personalized Ranking for Recommendation. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08--12, 2018, Kevyn Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz (Eds.). ACM, 355--364.
[41]
Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and Tat-Seng Chua. 2018c. NAIS: Neural Attentive Item Similarity Model for Recommendation. IEEE Trans. Knowl. Data Eng., Vol. 30, 12 (2018), 2354--2366.
[42]
Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, April 3--7, 2017, Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (Eds.). ACM, 173--182.
[43]
Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge J. Belongie, and Deborah Estrin. 2017. Collaborative Metric Learning. In Proceedings of the 26th International Conference on World Wide Web, WWW 2017, Perth, Australia, April 3--7, 2017, Rick Barrett, Rick Cummings, Eugene Agichtein, and Evgeniy Gabrilovich (Eds.). ACM, 193--201.
[44]
Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P. Heck. 2013. Learning deep structured semantic models for web search using clickthrough data. In 22nd ACM International Conference on Information and Knowledge Management, CIKM'13, San Francisco, CA, USA, October 27 - November 1, 2013, Qi He, Arun Iyengar, Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi (Eds.). ACM, 2333--2338.
[45]
Nicolas Hug. 2020. Surprise: A Python library for recommender systems. J. Open Source Softw., Vol. 5, 52 (2020), 2174.
[46]
Neil Hurley and Mi Zhang. 2011. Novelty and Diversity in Top-N Recommendation - Analysis and Evaluation. ACM Trans. Internet Techn., Vol. 10, 4 (2011), 14:1--14:30.
[47]
Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26--30, 2010, Xavier Amatriain, Marc Torrens, Paul Resnick, and Markus Zanker (Eds.). ACM, 135--142.
[48]
Christopher C Johnson. 2014. Logistic matrix factorization for implicit feedback data. Advances in Neural Information Processing Systems, Vol. 27, 78 (2014), 1--9.
[49]
Yu-Chin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-aware Factorization Machines for CTR Prediction. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, September 15--19, 2016, Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 43--50.
[50]
Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: factored item similarity models for top-N recommender systems. In The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11--14, 2013, Inderjit S. Dhillon, Yehuda Koren, Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh Parekh, Jingrui He, Robert L. Grossman, and Ramasamy Uthurusamy (Eds.). ACM, 659--667.
[51]
Wang-Cheng Kang, Chen Fang, Zhaowen Wang, and Julian J. McAuley. 2017. Visually-Aware Fashion Recommendation and Design with Generative Image Models. In 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, November 18--21, 2017, Vijay Raghavan, Srinivas Aluru, George Karypis, Lucio Miele, and Xindong Wu (Eds.). IEEE Computer Society, 207--216.
[52]
Dong Hyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. 2016. Convolutional Matrix Factorization for Document Context-Aware Recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, September 15--19, 2016, Shilad Sen, Werner Geyer, Jill Freyne, and Pablo Castells (Eds.). ACM, 233--240.
[53]
Joseph A. Konstan and Gediminas Adomavicius. 2013. Toward identification and adoption of best practices in algorithmic recommender systems research. In Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, RepSys 2013, Hong Kong, China, October 12, 2013, Alejandro Bellog'i n, Pablo Castells, Alan Said, and Domonkos Tikk (Eds.). ACM, 23--28.
[54]
Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24--27, 2008, Ying Li, Bing Liu, and Sunita Sarawagi (Eds.). ACM, 426--434.
[55]
Yehuda Koren and Robert M. Bell. 2015. Advances in Collaborative Filtering. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). Springer, 77--118.
[56]
Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques for Recommender Systems. Computer, Vol. 42, 8 (2009), 30--37.
[57]
Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. 2009. Latent dirichlet allocation for tag recommendation. In Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, NY, USA, October 23--25, 2009, Lawrence D. Bergman, Alexander Tuzhilin, Robin D. Burke, Alexander Felfernig, and Lars Schmidt-Thieme (Eds.). ACM, 61--68.
[58]
Walid Krichene and Steffen Rendle. 2020. On Sampled Metrics for Item Recommendation. In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23--27, 2020, Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (Eds.). ACM, 1748--1757.
[59]
Maciej Kula. 2015. Metadata Embeddings for User and Item Cold-start Recommendations. In Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems co-located with 9th ACM Conference on Recommender Systems (RecSys 2015), Vienna, Austria, September 16--20, 2015. (CEUR Workshop Proceedings, Vol. 1448), Toine Bogers and Marijn Koolen (Eds.). CEUR-WS.org, 14--21.
[60]
Maciej Kula. 2017. Spotlight. https://github.com/maciejkula/spotlight .
[61]
Daniel Lemire and Anna Maclachlan. 2005. Slope One Predictors for Online Rating-Based Collaborative Filtering. In Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005, Newport Beach, CA, USA, April 21--23, 2005, Hillol Kargupta, Jaideep Srivastava, Chandrika Kamath, and Arnold Goodman (Eds.). SIAM, 471--475.
[62]
Dong Li, Ruoming Jin, Jing Gao, and Zhi Liu. 2020. On Sampling Top-K Recommendation Evaluation. In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23--27, 2020, Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash (Eds.). ACM, 2114--2124.
[63]
Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23--27, 2018, Pierre-Antoine Champin, Fabien L. Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.). ACM, 689--698.
[64]
Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Comput., Vol. 7, 1 (2003), 76--80.
[65]
Qiang Liu, Shu Wu, and Liang Wang. 2017. DeepStyle: Learning User Preferences for Visual Recommendation. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7--11, 2017, Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.). ACM, 841--844.
[66]
Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2019. Performance comparison of neural and non-neural approaches to session-based recommendation. In Proceedings of the 13th ACM Conference on Recommender Systems, RecSys 2019, Copenhagen, Denmark, September 16--20, 2019, Toine Bogers, Alan Said, Peter Brusilovsky, and Domonkos Tikk (Eds.). ACM, 462--466.
[67]
Malte Ludewig, Noemi Mauro, Sara Latifi, and Dietmar Jannach. 2021. Empirical analysis of session-based recommendation algorithms. User Model. User Adapt. Interact., Vol. 31, 1 (2021), 149--181.
[68]
Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. 2014. An Efficient Non-Negative Matrix-Factorization-Based Approach to Collaborative Filtering for Recommender Systems. IEEE Trans. Ind. Informatics, Vol. 10, 2 (2014), 1273--1284.
[69]
Hao Ma, Haixuan Yang, Michael R. Lyu, and Irwin King. 2008. SoRec: social recommendation using probabilistic matrix factorization. In Proceedings of the 17th ACM Conference on Information and Knowledge Management, CIKM 2008, Napa Valley, California, USA, October 26--30, 2008, James G. Shanahan, Sihem Amer-Yahia, Ioana Manolescu, Yi Zhang, David A. Evans, Aleksander Kolcz, Key-Sun Choi, and Abdur Chowdhury (Eds.). ACM, 931--940.
[70]
Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. 2011. Recommender systems with social regularization. In Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9--12, 2011, Irwin King, Wolfgang Nejdl, and Hang Li (Eds.). ACM, 287--296.
[71]
Sean M. McNee, John Riedl, and Joseph A. Konstan. 2006. Being accurate is not enough: how accuracy metrics have hurt recommender systems. In Extended Abstracts Proceedings of the 2006 Conference on Human Factors in Computing Systems, CHI 2006, Montré al, Qué bec, Canada, April 22--27, 2006, Gary M. Olson and Robin Jeffries (Eds.). ACM, 1097--1101.
[72]
Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. 2020. Exploring Data Splitting Strategies for the Evaluation of Recommendation Models. In RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22--26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 681--686.
[73]
Xia Ning and George Karypis. 2011. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In 11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11--14, 2011, Diane J. Cook, Jian Pei, Wei Wang, Osmar R. Za"i ane, and Xindong Wu (Eds.). IEEE Computer Society, 497--506.
[74]
Wei Niu, James Caverlee, and Haokai Lu. 2018. Neural Personalized Ranking for Image Recommendation. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5--9, 2018, Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (Eds.). ACM, 423--431.
[75]
Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito, and Markus Zanker. 2012. Linked open data to support content-based recommender systems. In I-SEMANTICS 2012 - 8th International Conference on Semantic Systems, I-SEMANTICS '12, Graz, Austria, September 5--7, 2012, Valentina Presutti and Helena Sofia Pinto (Eds.). ACM, 1--8.
[76]
Steffen Rendle. 2010. Factorization Machines. In ICDM 2010, The 10th IEEE International Conference on Data Mining, Sydney, Australia, 14--17 December 2010, Geoffrey I. Webb, Bing Liu, Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu (Eds.). IEEE Computer Society, 995--1000.
[77]
Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, June 18--21, 2009, Jeff A. Bilmes and Andrew Y. Ng (Eds.). AUAI Press, 452--461.
[78]
Steffen Rendle, Walid Krichene, Li Zhang, and John R. Anderson. 2020. Neural Collaborative Filtering vs. Matrix Factorization Revisited. In RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22--26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 240--248.
[79]
Steffen Rendle, Li Zhang, and Yehuda Koren. 2019. On the Difficulty of Evaluating Baselines: A Study on Recommender Systems. CoRR, Vol. abs/1905.01395 (2019).
[80]
Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. 1994. GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In CSCW '94, Proceedings of the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA, October 22--26, 1994, John B. Smith, F. Donelson Smith, and Thomas W. Malone (Eds.). ACM, 175--186.
[81]
Alan Said and Alejandro Bellog'i n. 2014a. Comparative recommender system evaluation: benchmarking recommendation frameworks. In Eighth ACM Conference on Recommender Systems, RecSys '14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014, Alfred Kobsa, Michelle X. Zhou, Martin Ester, and Yehuda Koren (Eds.). ACM, 129--136.
[82]
Alan Said and Alejandro Bellog'i n. 2014b. Rival: a toolkit to foster reproducibility in recommender system evaluation. In Eighth ACM Conference on Recommender Systems, RecSys '14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014, Alfred Kobsa, Michelle X. Zhou, Martin Ester, and Yehuda Koren (Eds.). ACM, 371--372.
[83]
Aghiles Salah, Quoc-Tuan Truong, and Hady W. Lauw. 2020. Cornac: A Comparative Framework for Multimodal Recommender Systems. J. Mach. Learn. Res., Vol. 21 (2020), 95:1--95:5.
[84]
Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic Matrix Factorization. In Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 3--6, 2007, John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis (Eds.). Curran Associates, Inc., 1257--1264.
[85]
Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001. Item-based collaborative filtering recommendation algorithms. In Proceedings of the Tenth International World Wide Web Conference, WWW 10, Hong Kong, China, May 1--5, 2001, Vincent Y. Shen, Nobuo Saito, Michael R. Lyu, and Mary Ellen Zurko (Eds.). ACM, 285--295.
[86]
G. Schröder, M. Thiele, and W. Lehner. 2011. Setting goals and choosing metrics for recommender system evaluations. CEUR Workshop Proceedings, Vol. 811 (2011), 78--85.
[87]
Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015. AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the 24th International Conference on World Wide Web Companion, WWW 2015, Florence, Italy, May 18--22, 2015 - Companion Volume, Aldo Gangemi, Stefano Leonardi, and Alessandro Panconesi (Eds.). ACM, 111--112.
[88]
Zhu Sun, Di Yu, Hui Fang, Jie Yang, Xinghua Qu, Jie Zhang, and Cong Geng. 2020. Are We Evaluating Rigorously? Benchmarking Recommendation for Reproducible Evaluation and Fair Comparison. In RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22--26, 2020, Rodrygo L. T. Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein, and Edleno Silva de Moura (Eds.). ACM, 23--32.
[89]
Jinhui Tang, Xiaoyu Du, Xiangnan He, Fajie Yuan, Qi Tian, and Tat-Seng Chua. 2020. Adversarial Training Towards Robust Multimedia Recommender System. IEEE Trans. Knowl. Data Eng., Vol. 32, 5 (2020), 855--867.
[90]
Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5--9, 2018, Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (Eds.). ACM, 565--573.
[91]
Virginia Tsintzou, Evaggelia Pitoura, and Panayiotis Tsaparas. 2019. Bias Disparity in Recommendation Systems. In Proceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019), Copenhagen, Denmark, September 20, 2019 (CEUR Workshop Proceedings, Vol. 2440), Robin Burke, Himan Abdollahpouri, Edward C. Malthouse, K. P. Thai, and Yongfeng Zhang (Eds.). CEUR-WS.org.
[92]
Daniel Valcarce, Alejandro Bellog'i n, Javier Parapar, and Pablo Castells. 2018. On the robustness and discriminative power of information retrieval metrics for top-N recommendation. In Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2--7, 2018, Sole Pera, Michael D. Ekstrand, Xavier Amatriain, and John O'Donovan (Eds.). ACM, 260--268.
[93]
Saú l Vargas. 2014. Novelty and diversity enhancement and evaluation in recommender systems and information retrieval. In The 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR '14, Gold Coast, QLD, Australia - July 06 - 11, 2014, Shlomo Geva, Andrew Trotman, Peter Bruza, Charles L. A. Clarke, and Kalervo J"a rvelin (Eds.). ACM, 1281.
[94]
Saul Vargas and Pablo Castells. 2011. Rank and relevance in novelty and diversity metrics for recommender systems. In Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October 23--27, 2011, Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, and Gediminas Adomavicius (Eds.). ACM, 109--116.
[95]
Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng Zhang, and Dell Zhang. 2017. IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval Models. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7--11, 2017, Noriko Kando, Tetsuya Sakai, Hideo Joho, Hang Li, Arjen P. de Vries, and Ryen W. White (Eds.). ACM, 515--524.
[96]
Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural Graph Collaborative Filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21--25, 2019, Benjamin Piwowarski, Max Chevalier, É ric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer (Eds.). ACM, 165--174.
[97]
Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative Denoising Auto-Encoders for Top-N Recommender Systems. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, San Francisco, CA, USA, February 22--25, 2016, Paul N. Bennett, Vanja Josifovski, Jennifer Neville, and Filip Radlinski (Eds.). ACM, 153--162.
[98]
Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. 2017. Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19--25, 2017, Carles Sierra (Ed.). ijcai.org, 3119--3125.
[99]
Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. 2017. Deep Matrix Factorization Models for Recommender Systems. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19--25, 2017, Carles Sierra (Ed.). ijcai.org, 3203--3209.
[100]
Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and Deborah Estrin. 2018. OpenRec: A Modular Framework for Extensible and Adaptable Recommendation Algorithms. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, WSDM 2018, Marina Del Rey, CA, USA, February 5--9, 2018, Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek (Eds.). ACM, 664--672.
[101]
Hongzhi Yin, Bin Cui, Jing Li, Junjie Yao, and Chen Chen. 2012. Challenging the Long Tail Recommendation. Proc. VLDB Endow., Vol. 5, 9 (2012), 896--907.
[102]
Junliang Yu, Min Gao, Hongzhi Yin, Jundong Li, Chongming Gao, and Qinyong Wang. 2019. Generating Reliable Friends via Adversarial Training to Improve Social Recommendation. In 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8--11, 2019, Jianyong Wang, Kyuseok Shim, and Xindong Wu (Eds.). IEEE, 768--777.
[103]
ChengXiang Zhai, William W. Cohen, and John D. Lafferty. 2003. Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In SIGIR 2003: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, July 28 - August 1, 2003, Toronto, Canada, Charles L. A. Clarke, Gordon V. Cormack, Jamie Callan, David Hawking, and Alan F. Smeaton (Eds.). ACM, 10--17.
[104]
Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. 2006. Learning from Incomplete Ratings Using Non-negative Matrix Factorization. In Proceedings of the Sixth SIAM International Conference on Data Mining, April 20--22, 2006, Bethesda, MD, USA, Joydeep Ghosh, Diane Lambert, David B. Skillicorn, and Jaideep Srivastava (Eds.). SIAM, 549--553.
[105]
Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo Chen, Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, Yingqian Min, Zhichao Feng, Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and Ji-Rong Wen. 2020. RecBole: Towards a Unified, Comprehensive and Efficient Framework for Recommendation Algorithms. CoRR, Vol. abs/2011.01731 (2020).
[106]
Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19--23, 2018, Yike Guo and Faisal Farooq (Eds.). ACM, 1059--1068.
[107]
Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee. 2021. Popularity-Opportunity Bias in Collaborative Filtering. In Proceedings of the Fourteenth ACM International Conference on Web Search and Data Mining (WSDM '21), March 8--12, 2021, Virtual Event, Israel. ACM .
[108]
Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-Aware Tensor-Based Recommendation. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, Torino, Italy, October 22--26, 2018, Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava, Rakesh Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selcc uk Candan, Alexandros Labrinidis, Assaf Schuster, and Haixun Wang (Eds.). ACM, 1153--1162.
[109]
Ziwei Zhu, Jianling Wang, and James Caverlee. 2020. Measuring and Mitigating Item Under-Recommendation Bias in Personalized Ranking Systems. In Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25--30, 2020, Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu (Eds.). ACM, 449--458.

Cited By

View all
  • (2024)Our Model Achieves Excellent Performance on MovieLens: What Does It Mean?ACM Transactions on Information Systems10.1145/367516342:6(1-25)Online publication date: 18-Oct-2024
  • (2024)Group Validation in Recommender Systems: Framework for Multi-layer Performance EvaluationACM Transactions on Recommender Systems10.1145/36408202:1(1-25)Online publication date: 7-Mar-2024
  • (2024)RePlay: a Recommendation Framework for Experimentation and Production UseProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3691701(1191-1194)Online publication date: 8-Oct-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGIR '21: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval
July 2021
2998 pages
ISBN:9781450380379
DOI:10.1145/3404835
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. bias
  2. evaluation
  3. fairness
  4. recommender systems
  5. reproducibility

Qualifiers

  • Short-paper

Conference

SIGIR '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 792 of 3,983 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)213
  • Downloads (Last 6 weeks)14
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Our Model Achieves Excellent Performance on MovieLens: What Does It Mean?ACM Transactions on Information Systems10.1145/367516342:6(1-25)Online publication date: 18-Oct-2024
  • (2024)Group Validation in Recommender Systems: Framework for Multi-layer Performance EvaluationACM Transactions on Recommender Systems10.1145/36408202:1(1-25)Online publication date: 7-Mar-2024
  • (2024)RePlay: a Recommendation Framework for Experimentation and Production UseProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3691701(1191-1194)Online publication date: 8-Oct-2024
  • (2024)ReChorus2.0: A Modular and Task-Flexible Recommendation LibraryProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688076(454-464)Online publication date: 8-Oct-2024
  • (2024)From Clicks to Carbon: The Environmental Toll of Recommender SystemsProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688074(580-590)Online publication date: 8-Oct-2024
  • (2024)Revisiting BPR: A Replicability Study of a Common Recommender System BaselineProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688073(267-277)Online publication date: 8-Oct-2024
  • (2024)Informfully - Research Platform for Reproducible User StudiesProceedings of the 18th ACM Conference on Recommender Systems10.1145/3640457.3688066(660-669)Online publication date: 8-Oct-2024
  • (2024)Exploring the Landscape of Recommender Systems Evaluation: Practices and PerspectivesACM Transactions on Recommender Systems10.1145/36291702:1(1-31)Online publication date: 7-Mar-2024
  • (2024)A Framework and Toolkit for Testing the Correctness of Recommendation AlgorithmsACM Transactions on Recommender Systems10.1145/35911092:1(1-45)Online publication date: 7-Mar-2024
  • (2024)Can Small Language Models be Good Reasoners for Sequential Recommendation?Proceedings of the ACM Web Conference 202410.1145/3589334.3645671(3876-3887)Online publication date: 13-May-2024
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media